首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
γ-Al2O3 supported vanadium oxides were modified by tungsten and molybdenum oxides in order to improve dispersion and selectivity towards olefins in propane oxidative dehydrogenation (ODH). Both vanadium–tungsten and vanadium–molybdenum catalysts were obtained by adsorption of mixed isopolyanions (VW5O195−, V2W4O194−, VMo5O195− and V2Mo4O194−) from aqueous solutions. The isopolyanion solutions were characterized by UV-Vis and 51V NMR spectroscopy. Vanadium, vanadium–tungsten and vanadium–molybdenum precursors and catalysts were also characterized by UV-Vis (diffuse reflectance) and solid state 51V NMR spectroscopy. An improved selectivity to propene in the presence of tungsten and molybdenum in VOx/γ-Al2O3 was observed and attributed to dilution of vanadium by tungsten or molybdenum oxides on the γ-Al2O3 surface.  相似文献   

2.
This paper reports a comprehensive study by tast polarography, d.p.p., and cyclic voltammetry on the electrochemical reduction in different electrolytic media of ortho- and meta-nitrotoluene derivatives. Controlled potential electrolysis was used to generate the nitro radical anions and its detection by cyclic voltammetry and UV–Vis spectroscopy was performed. In protic media (30% ethanol/0.1 M Britton–Robinson buffer pH 2–12) both derivatives gave a sharp irreversible well-defined peak in all the pH range on Hg in a reaction involving four electrons to give the hydroxylamine derivative. In this medium meta-nitrotoluene is easier reduced in approximately 80 mV than that of the ortho-nitrotoluene. In mixed aqueous organic media (0.015 M aqueous citrate/DMF: 60:40, 0.3 M KCl and 0.1 M TBAI) at pH>8, the isolation and the electrochemical characterization of the one-electron reduction product, the nitro radical anion was achieved. At a 1 mM of nitrotoluene concentration, the average dismutation second-order rate constant values, k2, were: 11,000±170 and 6900±72 M−1 s−1 for ortho-and meta-nitrotoluene, respectively. In aprotic media (0.1 M TBAI in DMF), the nitro radical anions were more stable than that of mixed media, with the following dismutation second-order rate constant values, k2: 5800±35 and 4700±42 M−1 s−1 for ortho- and meta-nitrotoluene, respectively. Also, a comparison between nitrotoluene derivatives and some nitrocompounds of pharmacological relevance relating the effects of substituents on nitrobenzene and the electrolytic media composition on both the easiness of formation and stability of radicals is presented.  相似文献   

3.
N2O5 reacts with O2− ion in LiCl---KCl eutectic at 450° to give NO3. By analogy to the salts of the other oxides of Group V, NO3 can be considered as metanitrate and is expected to give—under appropriate conditions—the corresponding pyro-salt. Experiments are described in which the O2− ion in LiCl---KCl melt is potentiometrically titrated with KNO3. The titration curves show an inflexion at the composition corresponding to pyronitrate, N2O74−.

The formation of pyronitrate in KNO3 melts is also established. Strong oxide-ion donors, eg Na2O2 or NaOH, or electrolytically generated O2− ion, react slowly with the melt to produce a compound of less basic character. The reaction is zero-order with respect to O2− and has an activation energy of ca 6·17 Kcal/mole.

Pyronitrate in molten KNO3 possesses a basicity comparable to that of the carbonate ion in the same melt. It readily lends its oxide ion to strong acids eg, Cr2O72− and PO3. X-ray diffraction patterns of NO3-N2O74− mixtures show peaks that can be correlated to the new anion.  相似文献   


4.
Xiaoqiao Lu 《Electrochimica acta》2001,46(28):3577-4287
In this study, characterisation of vanadium electrolyte and vanadium(V) red precipitate formed in the positive half-cell electrolyte of a vanadium redox cell is present using different spectroscopic techniques. 51V solution NMR showed that the main peak at about −545 ppm in the spectra of the redox electrolyte could be attributed to the monomer species of VO2+ ions and the intensity of the peak decreased with both temperature and aging time. These results confirmed the formation of a red precipitate in the redox electrolyte due to polymerisation of the monomer species of VO2+ in the strong acidic media at elevated temperatures and with aging. Electron spin resonance (ESR) measurements showed that V(IV) ions were also present in the electrolyte. The presence of V(IV) ions may play an important role in the stability of the electrolyte. The static solid state 51V NMR spectrum of the thermal precipitate dried at room temperature showed a peak at −243 ppm which is characteristic of V(V) in distorted octahedral oxygen coordination similar to that formed for crystalline and gel forms of V2O5. Characteristics of V2O5 were also identified by X-ray diffraction (XRD) and had a fibrous morphology before heating. However, transition electron microscopy (TEM) showed that conversion of the fibrous morphology of V2O5 to the small crystalline morphology of V2O5 occurred after heating at 520°C.  相似文献   

5.
Several Mg–Y binary ribbons with Y content up to 17.9 at.% were fabricated by melt-spinning. X-ray diffraction (XRD) revealed that the phase structure changes with increasing Y content from extended solid solution to partially amorphous, and then fully intermetallic Mg24Y5. Anodic potentiodynamic polarization performed in 0.01 M NaCl electrolyte (pH=12) revealed improved anodic passivity behavior compared to pure Mg for all the Mg–Y alloys. X-ray photoelectron spectroscopy (XPS) revealed that the improved passivity of Mg–Y was more related to the elemental oxidation state rather than the concentration of the surface components. To study the effect of Cl ion on the passivity behavior, anodic potentiodynamic and potentiostatic polarization were performed on Mg–17.9 at.% Y in alkaline (pH=12) NaCl electrolytes containing Cl ion in the concentration range from 0.00 to 0.50 M. The passive films formed in 0.01 M NaCl electrolyte were similar to the native film, which were composed of MgO and Y2O3. No CO32− and Cl ions were incorporated into the passive film. The passivity was significantly degraded in the electrolytes containing higher Cl concentration (0.1 and 0.5 M). Detailed XPS revealed that the surface films under these conditions were composed of much hydrated species Mg(OH)2 and YOOH and/or Y(OH)3 and CO32− was incorporated into the surface film. The incorporation of Y2O3 in the passive film was given as the reason for the enhanced passivity properties of Mg–Y ribbons. The mechanism of Cl and CO32− ions to the degradation of the passivity was discussed.  相似文献   

6.
The previously described “redoxokinetic effect” is used to indicate the end-points of titrations of Fe2+ with Cr2O72-, sulphuric acid with sodium hydroxide, AsO2- with I2 and Ag+ with Cl. With the first three systems an accuracy of 0·1 per cent is possible. The method is not suited to the fourth system.

Abstract

Titrations of sulphuric acid vs. sodium hydroxide at 0·1 N concentration and ferrous ammonium sulphate vs. potassium dichromate at 0·05 N concentration can be carried out with an accuracy of ±0·1 per cent using the redoxokinetic technique. A very sharp end-point was obtained in the case of iodine vs. arsenite titration at 0·1 N concentration. Silver nitrate vs. chloride titrations cannot be carried out by the redoxokinetic technique.

Addition of MnSO4 to the extent of 50 g/l. of the solution enhances the precision considerably in the titration of dilute solutions of ferrous ammonium sulphate with dichromate.  相似文献   


7.
The Lux—Flood acid—base equilibrium SO3 + O2− SO42− in molten equimolar NaCl/KCl at 750°C has been investigated using conventional chronopotentiometry. The equilibrium constant for this reaction is shown to be very high (K > 102). Thus the sulphate ion in solution in this melt does not decompose unless a very strong acid such as the metaphosphate ion is added to the melt. This removes oxide ions according to the reaction. 2PO3 + SO42− → SO3 + P2O74− The pyrophosphate anion is not a sufficiently strong acid to remove oxide from sulphate.  相似文献   

8.
Gold loaded on TiO2 (Au/TiO2) catalysts were prepared using Au(I)–thiosulfate complex (Au(S2O3)23−) as the gold precursor for the first time. The samples were characterized by UV–vis diffuse reflectance spectra, X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic absorption flame emission spectroscopy (AAS), and X-ray photoelectron spectroscopy (XPS) methods. Using Au(S2O3)23− as gold precursor, ultra-fine gold nanoparticles with a highly disperse state can be successfully formed on the surface of TiO2. The diameter of Au nanoparticles increases from 1.8 to 3.0 nm with increasing the nominal Au loading from 1% to 8%. The photocatalytic activity of Au/TiO2 catalysts was evaluated from the analysis of the photodegradation of methyl orange (MO). With the similar Au loading, the catalysts prepared with Au(S2O3)23− precursor exhibit higher photocatalytic activity for methyl orange degradation when compared with the Au/TiO2 catalysts prepared with the methods of deposition–precipitation (DP) and impregnation (IMP). The preparation method has decisive influences on the morphology, size and number of Au nanoparticles loaded on the surface of TiO2 and further affects the photocatalytic activity of the obtained catalysts.  相似文献   

9.
Parallel experiments under similar conditions, using various substrates (atrazine, fenitrothion, 4-chlorophenol and 2,4-D) and OH radical scavengers (Br, isopropyl alcohol, tertiary butyl alcohol and acetone), have shown that the photooxidizing mode of PW12O403− and TiO2, i.e., OH radicals and/or holes (h+), depends on the nature of substrate and the mode of investigation. This provides an explanation for the controversial results reported in the literature. Atrazine shows that both PW12O403− and TiO2 operate, mainly, via OH radicals and to a lesser extent with holes (h+), whereas, fenitrothion suggests that both systems operate almost exclusively, via OH radicals. Differences in the action of the catalysts are encountered in the photodegradation of 4-chlorophenol (4-ClPh) and 2,4-dichlorophenoxyacetic acid (2,4-D). PW12O403− appears to operate essentially via OH radicals, whereas, h+ appear to be the major oxidant with TiO2. Overall, though, the action of OH radicals relative to h+ appears to be more pronounced with PW12O403− than TiO2.  相似文献   

10.
Combined effect of H2O and SO2 on V2O5/AC the activity of catalyst for selective catalytic reduction (SCR) of NO with NH3 at lower temperatures was studied. In the absence of SO2, H2O inhibits the catalytic activity, which may be attributed to competitive adsorption of H2O and reactants (NO and/or NH3). Although SO2 promotes the SCR activity of the V2O5/AC catalyst in the absence of H2O, it speeds the deactivation of the catalyst in the presence of H2O. The dual effect of SO2 is attributed to the SO42− formed on the catalyst surface, which stays as ammonium-sulfate salts on the catalyst surface. In the absence of H2O, a small amount of ammonium-sulfate salts deposits on the surface of the catalyst, which promote the SCR activity; in the presence of H2O, however, the deposition rate of ammonium-sulfate salts is much greater, which results in blocking of the catalyst pores and deactivates the catalyst. Decreasing V2O5 loading decreases the deactivation rate of the catalyst. The catalyst can be used stably at a space velocity of 9000 h−1 and temperature of 250 °C.  相似文献   

11.
Vanadium oxide spread highly on TiO2 (anatase, A) and SnO2, and rather densely on TiO2 (rutile, R) and ZrO2 to make the monolayer in less than 4–5 V nm−2. Profile of acid site of the monolayer was measured by temperature programmed desorption of ammonia, and its relation with the surface oxidation state was studied. The acid site density was high on the V2O5/TiO2 (A) independent of the degree of oxidation. On the other hand, that of V2O5/TiO2 (R) and V2O5/ZrO2 depended on the oxidation state, and the high value of the concentration was observed on the oxidized one. The strength of acid site generated on the V2O5 monolayer on TiO2 was as high as on the HZSM-5 zeolite. Turnover frequency (TOF) of propane conversion, and product selectivity were measured in propane oxidation. Among tested oxides, the V2O5/TiO2 (A) showed the high TOF and selectivity to form propylene, while those loaded on TiO2 (R) and ZrO2 the small TOF and poor selectivity. Therefore, the reaction profile of activity and selectivity could be related with the extent of spreading and solid acidity. An idea of limit of the acid site density ca. 1.5 nm−2 on the monolayer was elucidated.  相似文献   

12.
Layered -titanate materials, NaxMx/2Ti1−x/2O2 (M=Co, Ni and Fe, x=0.2–0.4), were synthesized by flux reactions, and electrical properties of polycrystalline products were measured at 300–800 °C. After sintering at 1250 °C in Ar, all products show n-type thermoelectric behavior. The values of both d.c. conductivity and Seebeck coefficient of polycrystalline Na0.4Ni0.2Ti0.8O2 were ca. 7×103 S/m and ca. −193 μV/K around 700 °C, respectively. The measured thermal conductivity of layered -titanate materials has lower value than conductive oxide materials. It was ca. 1.5 Wm−1 K−1 at 800 °C. The estimated thermoelectric figure-of-merit, Z, of Na0.4Ni0.2Ti0.8O2 and Na0.4Co0.2Ti0.8O2 was about 1.9×10−4 and 1.2×10−4 K−1 around 700 °C, respectively.  相似文献   

13.
The effect of different chemical parameters on photocatalytic inactivation of E. coli K12 is discussed. Illumination was produced by a solar lamp and suspended TiO2 P-25 Degussa was used as catalyst. Modifications of initial pH between 4.0 and 9.0 do not affect the inactivation rate in the absence or presence of the catalyst. Addition of H2O2 affects positively the E. coli inactivation rate of both photolytic (only light) and photocatalytic (light plus TiO2) disinfection processes. Addition of some inorganic ions (0.2 mmol/l) like HCO3, HPO42−, Cl, NO3 and SO42− to the suspension affects the sensitivity of bacteria to sunlight in the presence and in absence of TiO2. Addition of HCO3 and HPO42− resulted in a meaningful decrease in photocatalytic bactericidal effect while it was noted a weak influence of Cl, SO42− and NO3. The effect of counter ion (Na+ and K+) is not negligible and can modify the photocatalytic process as the anions. Bacteria inactivation was affected even at low concentrations (0.2 mmol/l) of SO42− and HCO3, but the same concentration does not affect the resorcinol photodegradation, suggesting that disinfection is more sensitive to the presence of natural anions than photocatalytic degradation of organic compounds. The presence of organic substances naturally present in water like dihydroxybenzenes isomers shows a negative effect on photocatalytic disinfection. The effect of a mixture of chemical substances on photocatalytic disinfection was also studied by adding to the bacterial suspension nutrient broth, phosphate buffer and tap water.  相似文献   

14.
Solid acidity of metal oxide monolayer and its role in catalytic reactions   总被引:1,自引:0,他引:1  
Such metal oxide as SO42−, MoO3, WO3, and V2O5 spread readily on supports like SnO2, ZrO2, and TiO2 due to the different properties between acid and base oxides to generate the acid site on the monolayer. Number, strength, and structure of the acid site were characterized by temperature-programmed desorption (TPD) of ammonia principally, together with various physico-chemical techniques, and its role for catalytic reactions was studied. Approximately, one to two acid sites were stabilized on 1 nm2 of the surface, which consisted of four to eight metal atoms. The limit in surface acid site density was estimated on the monolayer based on the concept of solid acidity on zeolites. Sequence of the metal oxide to show the strong acidity was, SO42−>WO3>MoO3>V2O5, and for the support oxide to accommodate the monolayer, SnO2>ZrO2>TiO2>Al2O3. From these combinations, the metal oxide monolayer to show the adequate strength of acid site could be selected. Brønsted acidity was observed often, however, the Lewis acidity was prevailing on the reduced vanadium oxide. The structure of acid site, Brønsted or Lewis acid site, thus depended on the oxidation state. Relationship of the profile of solid acidity with various catalytic activities was explained. The solid acid site on the monolayer will possibly be applied to environment friendly technologies.  相似文献   

15.
Photodegradation catalyst screening by combinatorial methodology   总被引:1,自引:0,他引:1  
In this work, a combinatorial methodology was developed for photodegradation catalyst screening. A fluorescence imaging detection system was designed for high throughput analysis, 1,6-hexamethylenediamine was used as the probe molecule for catalyst testing. The photodegradation activity of catalysts was evaluated by 1,6-hexamethylenediamine consumption during the photodegradation reaction. The methodology could provide reliable results. We found that pure TiO2, ZrO2, Nb2O5, MoO3, and WO3 did not show much activity for 1,6-hexamethylenediamine photodegradation under visible light. TiO2 catalysts doped with different metal ions were tested. When TiO2 was doped with Ta2O5, Nb2O5, V2O5, MoO3, or WO3, higher activity for photodegradation was observed. The doping of La3+, Ba2+, and Br to TiO2 did not improve the catalytic activities. When doping TiO2 with Mn2+, Cl, Al3+, Cu2+, Fe3+, Na+, Mg2+, Li+, F, Co2+, or K+, catalytic activity was lower than that of pure TiO2. After elaborate catalysts screening, we discovered new catalysts, such as 50–70% TiO2/0–20% WO3/20–40% VO2.5 and 20–30% TiO2/30–50% MoO3/40–60% VO2.5 as well as 30% WO3/20% ZrO2/50% NbO2.5 (synthesized from ZrCl4, NbCl5, and (NH4)5H5[H2(WO4)6]·H2O in ethanol solution or suspension) and 60–70% WO3/Nb2O5 (synthesized from WCl6 and NbCl5 in ethanol solution). We observed that the catalytic activity is sensitive to preparation methods and catalyst specific surface areas. When P123 (HO(CH2CH2O)20(CH2CH(CH3)O)70(CH2CH2O)20H, designated EO20PO70EO20) was used as template to synthesize mesoporous materials, the mesoporous catalysts showed higher activity than regular catalytic materials.  相似文献   

16.
A novel multiwalled carbon nanotube (CNTs) supported vanadium catalyst was prepared. The structure of catalyst prepared was characterized by TEM, BET, FTIR, XRD and temperature-programmed desorption (TPD) methods. The results indicated that vanadium particles were highly dispersed on the wall of carbon nanotubes. The V2O5/CNT catalysts showed good activities in the SCR of NO with a temperature range of 373–523 K. The Lewis acid sites on the surface of V2O5/CNT are the active sites for the selective catalytic reduction (SCR) of NO with NH3 at low temperatures. It was suggested that the reaction path might involve the adsorbed NH3 species reacted with NO from gaseous phase and as well as the adsorbed NO2 species. The diameter of CNTs showed positive effect on the activities of the catalysts. Under the reaction conditions of 463 K, 0.1 Mpa, NH3/NO = 1, GHSV = 35,000 h−1, and V2O5 loading of 2.35 wt%, the outer diameter of CNTs of 60–100 nm, the NO conversion was 92%.  相似文献   

17.
The evolution of the cathode material of Li/V2O5 cells upon lithium intercalation is studied by Electron Paramagnetic Resonance (EPR) spectroscopy. Below one lithium per V2O5(x < 1), where the electrochemical process is completely reversible, VIV ions of the - and δ-Lix V2O5 phases are detected by EPR. Within this intercalation range, the shape of the EPR signal is dominated by the strong exchange interactions between magnetically concentrated VIV ions of the Lix V2O5 phases. The intercalation range x > 1 is characterized by a new EPR signal attributed to magnetically diluted vanadyl ions VO2+. It is shown that these species do not belong to the Lix V2O5 matrix, but most probably originate from the liberation of surface vanadyl ions during the irreversible transformation of δ-Lix V2O5 into γ-Lix V2O5. On the basis of these results, a mechanism to explain the partial irreversibility of the electrochemical processes is proposed. A third EPR signal is also observed for x 1. This signal is attributed to an electron-hole defect in Lix V2O5, originating from a local charge compensation of the vanadyl vacancies.  相似文献   

18.
Maiden attempt has been made for the direct estimation of the contributions of silver and copper ions to the ionic conductivity in superionic solids obtained in CuI-doped silver oxysalt systems. The application of the combined electrolysis and EDS techniques towards qualitative and quantitative analyses of the mobile ionic species in solid electrolyte systems having more than one possible mobile ion is reported. These studies confirmed that these electrolyte materials are purely Ag+ conducting up to 50 mol% CuI in xCuI–(100 − x)[2Ag2O–0.7V2O5–0.3B2O3] and xCuI–(100 − x)[Ag2O–0.7MoO3–0.3WO3] systems and small fraction of tCu+ exists above 60 mol% CuI. These solid electrolyte materials exhibited a high ionic transport numbers (ti) of >0.985 and the ti increases when two glass formers are used.  相似文献   

19.
J.M. Parera 《Catalysis Today》1992,15(3-4):481-490
The promotion of zirconia by SO42− is studied by percolating of zirconia with aqueous solutions of several sulfur compounds and several concentrations of H2SO4 as sources of sulfur. The presence of SO42− is necessary to have catalytic activity to isomerize n-butane and produces a great increase in the stability of the physical texture to thermal treatments. The more convenient solution is 1N H2SO4·S042−/ZrO2 has the greatest catalytic activity after calcination at 893 K, where the tetragonal phase of ZrO2 predominates. The catalytic activity was found proportional to the specific surface area and surface SO42− concentration.  相似文献   

20.
The reduction of nitrogen monoxide by propene on V2O5/ZrO2 doped with or without calcium has been studied by FTIR spectroscopy as well as by analysis of the reaction products. Considerable promoting effect of calcium doping on the reduction of nitrogen monoxide by propene was observed on the V2O5/ZrO2 catalysts. For the reaction of a mixture of NO+C3H6, carbonyl and carboxylate species were observed above 373 K, although nitrate species formed at room temperature on V2O5/ZrO2 doped with calcium. No bands due to a compound including both carbon and nitrogen atoms were observed. Thus, the redox mechanism, i.e. propene reduces the catalyst and nitrogen monoxide oxidizes the catalyst, is confirmed on V2O5/ZrO2 catalysts doped with or without calcium. The analysis of the V=O band in the region of 1100–900 cm−1 indicates that this promotion is mainly due to new V=O species formed by the addition of calcium onto the catalyst. This species is easily reproduced in comparison with the other V=O species on the surface in the reoxidation process of the catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号