首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hot deformation behavior of superaustenitic stainless steel S32654 was investigated with hot compression tests at temperatures of 950-1 250 ℃ and strain rates of 0.001-10s~(-1).Above 1 150 ℃,with strain rate lower than 0.1s~(-1),the flow curves exhibit nearly steady-state behavior,while at higher strain rate,continuous flow softening occurs.To provide a precise prediction of flow behavior for the alloy,the constitutive modeling considering effect of strain was derived on the basis of the obtained experimental data and constitutive relationship which incorporated Arrhenius term and hyperbolic-sine type equation.The material constantsα,n,Q and lnA are found to be functions of the strain and can be fitted employing eighth-order polynomial.The developed constitutive model can be employed to describe the deformation behavior of superaustenitic stainless steel S32654.  相似文献   

2.
Hot compression tests were conducted on a Gleeble-3800 machine in a temperature range of 950 to 1200 ℃ and a strain rate range of 0. 001 to 10 s-1 in order to study the hot deformation behaviour of superaustenitic stainless steel 654SMO. The results show that peak stress increases with decreasing temperature and increasing strain rate, and the apparent activation energy of this alloy was determined to be about 494 kJ/mol. The constitutive equation which can be used to relate the peak stress to the absolute temperature and strain rate was obtained. The processing maps for hot working developed on the basis of flow stress data and the dynamic materials model were adopted to op- timize the hot workability. It is found that the features of the maps obtained in the strain range of 0.2 to 1.0 are fun- damentally similar, indicating that the strain does not have a substantial influence on processing map. The combina- tion of processing map and mierostructural observations indicates that the favorable hot deformation conditions are located in two domains of processing map. The first domain occurs in the temperature range of 980 to 1035 ℃ and strain rate range of 0. 001 to 0.01 s-1 with a peak efficiency of 55%. The second domain appears in the temperature range of 1 120 to 1 180 ℃ and strain rate range of 0.3 to 3 s-1 with peak efficiency of 35%. Compared to other stable domains, the specimens deformed in these two domains exhibit full dynamic recrystallization grains with finer and more uniform sizes. An instability domain occurs at temperatures below 1 100 ℃ and strain rate above 0.1 s-1 , and flow instability is manifested in the form of flow localization.  相似文献   

3.
Hot compression tests were carried out in the temperature range of 1 223-1 473 Kand strain rate range of0.01-30s-1 to investigate the flow behavior and microstructural evolution of super duplex stainless steel 2507(SDSS2507).It is found that most of the flow curves exhibit a characteristic of dynamic recrystallization(DRX)and the flow stress increases with the decrease of temperature and the increase of strain rate.The apparent activation energy Qof SDSS2507 with varying true strain and strain rate is determined.As the strain increases,the value of Qdeclines in different ways with varying strain rate.The microstructural evolution characteristics and the strain partition between the two constituent phases are significantly affected by the Zener-Hollomon parameter(Z).At a lower lnZ,dynamic recovery(DRV)and continuous dynamic recrystallization(CDRX)of the ferrite dominate the softening mechanism during the compression.At this time,steady state deformation takes place at the last stage of deformation.In contrast,a higher lnZ will facilitate the plastic deformation of the austenite and then activate the discontinuous dynamic recrystallization(DDRX)of the austenite,which leads to a continuous decline of the flow stress even at the last deformation stage together with CDRX of the ferrite.  相似文献   

4.
The hot deformation behavior of a high nitrogen CrMn austenitic stainless steel in the temperature range 1173 to 1473 K (900 to 1200 °C) and strain rate range 0.01 to 10 s−1 was investigated using optical microscopy, stress-strain curve analysis, processing maps, etc. The results showed that the work hardening rate and flow stress decreased with increasing deformation temperature and decreasing strain rate in 18Mn18Cr0.5N steel. The dynamic recrystallization (DRX) grain size decreased with increasing Z value; however, deformation heating has an effect on the DRX grain size under high strain rate conditions. In the processing maps, flow instability was observed at higher strain rate regions (1 to 10 s−1) and manifested as flow localization near the grain boundary. Early in the deformation, the flow instability region was at higher temperatures, and then the extent of this unstable region decreased with increasing strain and was restricted to lower temperatures. The hot deformation equation as well as the quantitative dependence of the critical stress for DRX and DRX grain size on Z value was obtained.  相似文献   

5.
With hot rolling in laboratory and Gleeble thermal simulator,the hot working of a high nitrogen austenitic stainless steel(HNASS)was researched.The results showed that dynamic recovery(DRV)and dynamic recrystallization(DRX)in HNASS occurred during hot working,and both of them had well-defined stress peaks in flow curves under different conditions.During hot rolling experiment at temperature from 950 to 1050 ℃,recrystallization phenomenon does not take place in test material until the deformation ratio is up to 40%.Recrystallization influences remarkably the strength and ductility of material,and the test HNASS possesses better combination of strength with ductility.According to the curve of θ-σ(strain hardening rate-steady state stress),the DRX critical strain of test material was determined.Also,the activation energy of hot working was calculated to be 746.5 kJ/mol and the equation of hot working was obtained.  相似文献   

6.
The hot deformation behavior of AISI 410 martensitic stainless steel was investigated by conducting hot compression tests between 1173 K (900 °C) and 1423 K (1150 °C) and between strain rates of 0.001 s−1 to 1 s−1. The hyperbolic sine function described the relation well between flow stress at a given strain and the Zener–Hollomon parameter (Z). The variation of flow stress with deformation temperature gave the average value of apparent activation energy as 448 kJ/mol. The strain and stress corresponding to two important points associated with flow curve (i.e., peak strain and the onset of steady-state flow) were related to the Z parameter using power-law equations. A model also was proposed based on the Johnson–Mehl–Avrami–Kolmogorov (JMAK) equation to estimate the fractional softening of dynamic recrystallization at any given strain. This model can be used readily for the prediction of flow stress. The values of n and k, material constants in the JMAK equation, were determined for the studied material. The strains regarding the peak and the onset of steady-state flow were formulated in term of applied strain rate and the constants of the JMAK equation. A good agreement was found between the predicted strains and those obtained by the experimental work.  相似文献   

7.
8.
9.
10.
Metallurgical and Materials Transactions A - The present work addresses the effect of three high-temperature deformation modes, namely, torsion, uniaxial compression, and plane strain compression,...  相似文献   

11.
范植金  程秀峰 《特殊钢》1996,17(5):42-44
对SUS416不锈钢的热加工纵和中裂和钢坯横向、纵向的热塑性研究结果表明:钢坯的横向热塑性在900-1000℃温度区间存在一明显的低塑性区。在变形应力作用下,裂纹沿条带串状分布的硫化物和基休玎界萌生和扩展,形成纵向开理解。采用630kg锭锻造开130nm方坯再轧制成材的工艺,加热温度控制在1200-1250℃,热加工开始温度为1100℃,终了温度为≥1000℃,则基本消除了这咱裂纹  相似文献   

12.
The metadynamic recrystallization(MDRX)behavior of as-cast 904 Lsuperaustenitic stainless steel was investigated by double pass isothermal compression tests at temperatures of 950-1 150℃,strain rates of 0.05-5s~(-1)and interval of 1-100 s.The effects of working parameters(deformation temperature,strain rate,pre-strain and interval time)on the flow curves and microstructural evolution were discussed.The MDRX fraction increased obviously with the increase of deformation temperature,strain rate and interval time.The MDRX softening was controlled by the migration of grain boundary,annihilation of dislocation and dynamic recrystallization.Moreover,the kinetic model was established for the prediction of MDRX behavior of as-cast 904 Lsuperaustenitic stainless steel based on the experimental data.A good agreement between the predicted and the experimental values was achieved(correlation coefficient R~2=0.98),indicating a satisfactory accuracy.  相似文献   

13.
14.
15.
Microstructural evolution and bonding behavior of transient liquid-phase (TLP) bonded joint for a duplex stainless steel using MBF-30 (Ni-4.5Si-3.2B [wt pct]) and MBF-50 (Ni-7.5Si-1.4B-18.5Cr [wt pct]) were investigated. Using MBF-30, the microstructure of the athermally solidified zone was dependent on B diffusion at 1333.15 K (1060 °C). Ni3B and a supersaturated γ-Ni phase were observed in this zone. BN appeared in the bonding-affected zone. However, using MBF-50, the influences of base metal alloying elements, particularly N and Cr as well as Si in the filler material, on the bond microstructure development were more pronounced at 1448.15 K (1175 °C). BN and (Cr, Ni)3Si phase were present in the bond centerline. The formation of BN precipitates in the bonding-affected zone was suppressed. A significant deviation in the isothermal solidification rate from the conventional TLP bonding diffusion models was observed in the joints prepared at 1448.15 K (1175 °C) using MBF-50.  相似文献   

16.
In current study, the effect of microstructure on hot ductility of nickel-free austenitic high nitrogen steel DIN EN 1.4452 was investigated. Phase transformations and precipitation were modeled as well as experimentally determined via microstructural evaluation. Hot tensile and compression tests were used to simulate the hot deformation behavior at temperatures between 1173 K and 1573 K (900 °C and 1300 °C). Hot tensile test determined the high-temperature properties. The effect of temperature on cracking sensibility during hot deformation was investigated using hot compression test. The results showed that better hot ductility is observed at temperatures ranging from 1423 K to 1523 K (1150 °C to 1250 °C). The increase of hot ductility depends on grain refinement due to dynamic recrystallization at this temperature range.  相似文献   

17.
The grain growth behavior of 304L stainless steel was studied in a wide range of annealing temperatures and times with emphasis on the distinction between normal and abnormal grain growth (AGG) modes. The dependence of AGG (secondary recrystallization) at homologous temperatures of around 0.7 upon microstructural features such as dispersed carbides, which were rich in Ti but were almost free of V, was investigated by optical micrographs, X-ray diffraction patterns, scanning electron microscopy images, and energy dispersive X-ray analysis spectra. The bimodality in grain-size distribution histograms signified that a transition in grain growth mode from normal to abnormal was occurred at homologous temperatures of around 0.7 due to the dissolution/coarsening of carbides. Continued annealing to a long time led to completion of secondary recrystallization and the subsequent reappearance of normal growth mode. Another noticeable abnormality in grain growth was observed at very high annealing temperatures, which may be related to grain boundary faceting/defaceting. Finally, a versatile grain growth map was proposed, which can be used as a practical guide for estimation of the resulting grain size after exposure to high temperatures.  相似文献   

18.
Austenitic stainless steel AISI 304 coating was deposited over low carbon steel substrate by means of friction surfacing and the microstructural evolution was studied. The microstructural characterization of the coating was carried out by optical microscopy (OM), electron back scattered diffraction (EBSD), and transmission electron microscopy (TEM). The coating exhibited refined grains (average size of 5 ??m) as compared to the coarse grains (average size of 40 ??m) in as-received consumable rod. The results from the microstructural characterization studies show that discontinuous dynamic recrystallization (DDRX) is the responsible mechanism for grain evolution as a consequence of severe plastic deformation.  相似文献   

19.
20.
The development of microstructure and strength during forging in a γ′ strengthened austenitic stainless steel, JBK-75, was investigated by means of forward extrusion of cylindrical specimens. The specimens were deformed in a strain range of 0.16 to 1.0, from 800°C to 1080°C, and at approximate strain rates of 2 (press forging) and 2 × 103 s-1 (high energy rate forging), and structures examined by light and transmission microscopy. Mechanical properties were determined by tensile testing as-forged and forged and aged specimens. The alloy exhibited an extremely wide variety of structures and properties within the range of forging pzrameters studied. Deformation at the higher strain ratevia high energy rate forging resulted in unrecovered substructures and high strengths at low forging temperatures, and static recrystallization and low strengths at high temperatures. In contrast, however, deformation at the lower strain ratevia press forging resulted in retention of the well developed subgrain structure and associated high strength produced at high forging temperatures and strains. At lower temperatures and strains during press forging a subgrain structure formed preferentially at high angle grain boundaries, apparently by a creep-type deformation mechanism. Dynamic recrystallization was not an important restoration mechanism for any of the forging conditions. The results are interpreted on the basis of stacking fault energy and the accumulation of strain energy during hot working. The significance of observed microstructural differences for equivalent deformation conditions (iso-Z, where Z is the Zener-Holloman parameter) is discussed in relation to the utilization of Z for predicting hot work structures and strengths. Aging showed that the γ′ precipitation process is not affected by substructure and that the strengthening contributions, from substructure and precipitation, were independent and additive. Applications for these findings are discussed in terms of process design criteria. Formerly with Rockwell International, Energy Systems Group  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号