首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
In order to clarify effects of electric charge on freezing of supercooled water, experiments were carried out with various kinds of electrodes in supercooled water. Water sample was kept in a test tube and cooled down at a constant cooling rate. When the water sample was maintained under a supercooling state, an electric charge was applied to the water sample with a small electric current. The degree of supercooling was measured continuously. Then the degree of supercooling at freezing was determined. Six kinds of materials were used for electrodes. Those materials were Aluminum, Copper, Argentum, Aurum, Platinum and Carbon. It was found that the effects of electric charge were distinct according to the material used for electrodes. The degree of supercooling at freezing was the lowest in the case of Aluminum. On the other hand, the highest value of the degree of supercooling at freezing was obtained in the case of carbon. The reason for the difference in the degree of supercooling at freezing by six materials was discussed.  相似文献   

2.
Heterogeneous nucleation of water was investigated using molecular dynamics simulation. Solid with fcc (111) surface was placed at the bottom of a cell consisting of 864 water molecules. ST2 model with NPT ensemble was used. The pressure and temperature were set to be 0.1 MPa and 275 K, respectively. The interaction between water and the solid was based on the equations proposed by Spohr. Exception was made on the lattice constant which was slightly modified to fit with that for ice structure. The shape of the solid surface was considered. It was found that the only one layer of water molecules was adsorbed in a case of a flat surface, whereas ice nucleation occurred by removing some of the atoms from the surface. Spohr's interaction was also modified so that the dipole moment of water became anti-ferroelectric. It was found that the modification increased the ice growth, further. The effect of lattice constant of solid on nucleation was also investigated. It was found that the variation on lattice constant with a few percent from that of ice was acceptable for nucleation, especially on shrinking side. On expanding side, however, it gave some gaps for water molecules to fit in other than that for ice structure, and it prevented the growth of ice. Hence, a guideline for the selection of ice nucleus material was obtained.  相似文献   

3.
The effect of stationary and sweeping frequency AC electric fields on frost crystals growth and frost control/removal on a cold plate was studied for the first time in this paper. The main results of this study showed that the presence of AC electric fields can greatly affect both the frost crystals growth pattern and mass accumulation on cold surfaces. The ice surface electrical properties and basic electrostatics were used to explain the main findings in this paper. Up to 46% frost reduction was obtained when the electric field frequency spanned 370 Hz to 7.5 kHz while the applied voltage was 14.5 kV. Two different sets of environmental conditions were tested, which showed that the plate temperature placed an important effect on frost crystals growth under electric fields. An optimum application time of the AC electric fields was found based on least frost mass accumulation on the cold plate.  相似文献   

4.
A newly developed adsorption water chiller is introduced and tested. In the new adsorption refrigeration system, there are no refrigerant valves, the problem of mass transfer resistance resulting in pressure drop along refrigerant passage in conventional systems when methanol or water is used as refrigerant can be absolutely solved. Silica-gel–water is used as working pair and mass recovery-like process is adopted in order to use low temperature heat source ranging from 70 to 85 °C effectively. The experiment results demonstrate that the chiller (26.4 kg silica-gel in each adsorber) has a cooling capacity of 2–7.3 kW and COP ranging 0.2–0.42 according to different evaporating temperatures. Based on the experimental tests of the first prototype, the second prototype is designed and tested; the experimental data demonstrate that the chiller performance has been greatly improved, with a heat source temperature of 80 °C, a COP over 0.5 and cooling capacity of 9 kW has been achieved at evaporating temperature of 13 °C.  相似文献   

5.
The effect of salt concentration on the freezing point of meat simulants   总被引:2,自引:0,他引:2  
Accurate data on the initial freezing point of cured meat is required to predict freezing rates or identify optimal slicing temperatures. However, little data was found in the literature. Experiments were therefore carried out using the ‘Karlsruhe test substance’ (‘Tylose’) with varying salt concentrations as a cured meat substitute. Initial freezing points were −1.4, −3.1, −4.1, −5.2 and −6.3 °C at salt contents of 0.5, 2, 3, 4 and 5 kg salt/100 kg sample, respectively. These values were within ±0.5 °C of published values for cured pork and within ±0.9 °C of theoretical predictions. Modifying the salt content of Tylose is therefore a simple way of determining the initial freezing point of cured lean meats, and Tylose modified in this way can be used to simulate the freezing of cured meat.  相似文献   

6.
The performance of a two-stage adsorption chiller with different mass allocation between upper and bottom beds has been investigated numerically. It is found that the chiller can be driven effectively by the waste heat of temperature 55 °C with the heat sink at environment temperature. Results show that cooling capacity can be improved with the optimum allocation of adsorbent mass to the bottom beds than that to the upper beds. The improvement in Coefficient of Performance (COP) values, however, is less significant. It is also seen that the improvement in cooling capacity is more significant for the relatively higher heat source temperature. It is shown that the cooling capacity can be improved up to 20% if the heat source temperature is 80 °C and the average outlet temperature is fixed at 7 °C.  相似文献   

7.
The freezing process is widely used in the food industry. In the 70s, French regulation authorities have created in collaboration with the food industry the concept of «surgélation» process with the objective of improving the image of high quality frozen foods. The process of “surgélation” which could be translated as “super freezing” corresponds to a freezing process for which a final temperature of −18 °C must be reached “as fast as possible”. This concept was proposed in opposition to a conventionally “freezing” process for which no specific freezing rate is expected and the final storage temperature can be of −12 °C only. The objective of this work is to propose a methodology to evaluate the mean amount of frozen ice in a complex food as a function of temperature and to deduce a target temperature that must be considered as the temperature for which the food may be considered as “frozen”. Based on the definition proposed by the IIF-IIR red book, this target temperature has been defined as the temperature for which 80% of the freezable water is frozen. A case study is proposed with a model food made of two constituents.  相似文献   

8.
A W/O (water-in-oil) emulsion was made from a water–lamp oil mixture with higher water content and a small amount of an additive of amino group-modified silicone oil, and the emulsion could be changed into an ice slurry by cooling with stirring. By using a new continuous ice formation system proposed by one of the authors of this paper, the ice slurry could be formed continuously and stably in an ice formation vessel made of stainless steel. From the experimental results, the conditions were clarified for realizing continuous ice formation for 10 h without ice adhesion to the cooling wall. Moreover, in order to propagate supercooling dissolution of the emulsion effectively and to decrease viscosity in the ice slurry, voltages were applied to the emulsion and ice slurry formed, respectively, and it was clarified that the voltage impression was effective for both.  相似文献   

9.
In this report we present a new instrument (a droplet nucleation analyzer) to be used in the study of the influence of ultrasonic waves on the freezing of pure water. This influence can be of great interest in the cryopreservation of biological material. Two different types of experiments have been carried out. In the first set of experiments, ultrasound waves were used during the cooling process. In the second set, ultrasound was applied prior to the cooling process, trying to quantitatively reproduce some experiments in which the ice nucleation temperature of water was successfully decreased. A theoretical discussion of the results is also presented.  相似文献   

10.
This study focuses on an emulsion as a new thermal storage material for ice storage. Two types of emulsions were formed using an oil–water mixture with a small amount of additive. A silicone, light and lump oils were used. The water contents of the emulsions were 70, 80 and 90%. The additive was an amino group modified silicone oil. No depression of freezing point was observed for the emulsions because of their hydrophobic properties. In order to determine the structure of the emulsions, their electrical resistances were measured. Moreover, components of the liquids separating from the emulsions were analyzed. The results indicated that one emulsion was a W/O type emulsion, while the other was an O/W type. Finally, adaptability of the two emulsions to ice storage was discussed, it was concluded that a high performance ice slurry could be formed by the W/O type emulsion.  相似文献   

11.
For ice storage, one of authors has studied new ice slurry formed by cooling a water–oil mixture with stirring. When the mixture is stirred in a vessel, oil is charged by static electricity due to friction. If the vessel wall can attract charged oil, prevention of ice adhesion to the wall may be realized. Therefore, in this paper, in order to observe behavior of charged water–oil droplet or mixture in electric field by a high speed camera or video camera, two types of experiments were carried out. One was that the water–oil droplet charged by static electricity was made to fall plumb down between two electrodes with electric field or without electric field, varying the water content of droplet. The other was that a constant voltage was applied on the vessel filled with the water–oil mixture stirred. From experiments, it was confirmed that attracting force between the charged wall (electrode) and charged oil acted.  相似文献   

12.
Pressure drop of single-phase turbulent flow inside herringbone microfin tubes of different fin dimensions has been measured experimentally to develop a general correlation of single-phase friction factor for the herringbone tubes. Water has been used as a working fluid and the mass flow rate has been varied from 0.03 to 0.2 kg/s, where the Reynolds number range is 104 to 6.5 × 104. Comparison of experimental data of the herringbone microfin tubes with those of helical microfin and smooth tubes shows that pressure drop of the herringbone tube is significantly higher than the helical and smooth tubes depending on the fin geometric parameters and mass velocity of the working fluid. Through semi-analytical approach and using the present experimental data, a new correlation of single-phase friction factor for the herringbone microfin tubes has been proposed incorporating the effects of fin geometric parameters. The proposed correlation can predict the experimental data within ±10%.  相似文献   

13.
Two-phase pressure drop of R-410A in horizontal smooth minichannels   总被引:2,自引:0,他引:2  
Convective boiling pressure drop experiments were performed in horizontal minichannels with a binary mixture refrigerant, R-410A. The test section was made of stainless steel tubes with inner diameters of 1.5 mm and 3.0 mm and with lengths of 1500 mm and 3000 mm, respectively. This test section was uniformly heated by applying electric current directly to the tubes. Experiments were performed at inlet saturation temperature of 10 °C, mass flux ranges from 300 to 600 kg m−2 s−1 and heat flux ranges from 10 to 40 kW m−2. The current study showed the significant effect of mass flux and tube diameter on pressure drop. The experimental results were compared against 15 two-phase pressure drop prediction methods. The homogeneous model predicted well the experimental pressure drop, generally. A new pressure drop prediction method based on the Lockhart–Martinelli method was developed with 4.02% mean deviation.  相似文献   

14.
Based on experimental data for R134a, the present work deals with the development of a prediction method for heat transfer in herringbone microfin tubes. As is shown in earlier works, heat transfer coefficients for the investigated herringbone microfin tube tend to peak at lower vapour qualities than in helical microfin tubes. Correlations developed for other tube types fail to describe this behaviour. A hypothesis that the position of the peak is related to the point where the average film thickness becomes smaller than the fin height is tested and found to be consistent with observed behaviour. The proposed method accounts for this hypothesis and incorporates the well-known Steiner and Taborek correlation for the calculation of flow boiling heat transfer coefficients. The correlation is modified by introducing a surface enhancement factor and adjusting the two-phase multiplier. Experimental data for R134a are predicted with an average residual of 1.5% and a standard deviation of 21%. Tested against experimental data for mixtures R410A and R407C, the proposed method overpredicts experimental data by around 60%. An alternative adjustment of the two-phase multiplier, in order to better predict mixture data, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号