首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of fin height and helix angle on condensation inside a herringbone microfin tube have been experimentally investigated with five types of herringbone microfin tubes. Heat transfer coefficients are about 2–4 times higher than that of the helical microfin tube under high mass velocity conditions. In the low mass velocity, they are equal to that of the helical microfin tube. The heat transfer enhancement increases with fin height up to 0.18 mm; higher fin heights show enhancement values similar to the 0.18 mm results. Pressure drop increases with the fin height. Larger helix angle yields higher heat transfer and higher pressure drop. For the lowest fin and/or smallest helix angle, the pressure drop is comparable with that of the helical microfin tube, while the heat transfer enhancement is higher. The enhancement mechanism is discussed from flow pattern observations. Effect of mass transfer resistance for R410A is estimated and negligible effects have been proved.  相似文献   

2.
Heat transfer of supercritical carbon dioxide cooled in circular tubes was investigated experimentally. The effect of mass flux, pressure, and heat flux on the heat transfer coefficient and pressure drop was measured for four horizontal cooling tubes with different inner diameters ranging from 1 to 6 mm. The radial distribution of the thermophysical properties (i.e. specific heat, density, thermal conductivity and viscosity) in the tube cross-section was critical for interpreting the experimental results. A modified Gnielinski equation by selecting the reference temperature properly was then developed to predict the heat transfer coefficient of supercritical carbon dioxide under cooling conditions. This proposed correlation was accurate to within 20% of the experimental data.  相似文献   

3.
Experimental results are presented that show the effect of fin geometry on condensation of refrigerant HFC134a in a staggered bundle of horizontal finned tubes. Two types of conventional low-fin tubes and three types of three-dimensional fin tubes were tested. The refrigerant mass velocity ranged from 8 to 23 kg/m2s and the condensation temperature difference from 1.5 to 12 K. The effect of condensate inundation was more significant for the three-dimensional fin tubes than for the low-fin tubes. In most cases, the highest performance was obtained by the tube with a three-dimensional structure at the tip of low fins. In the case of high mass velocity and high condensate inundation rate, however, the highest performance was obtained by one of the low-fin tubes. The results were compared with previous results for bundles of smooth tubes and low-fin tubes.  相似文献   

4.
A number of correlation equations describing the performance characteristics of round tube and plate fin have been published in the open literature. However, many of these correlations are restricted to flat finned heat exchangers and a limited number of geometrical configurations. In this study, 28 heat exchanger samples were tested in an open circuit thermal wind tunnel over a velocity range of 1 to 20 m/s for a number of geometries. The geometrical variations include the number of tube rows, fin thickness and the spacing between fins, rows and tubes. Both flat and corrugated fins were tested and the results were correlated in terms of j and f factors as a function of Reynolds number and the geometrical parameters of the heat exchangers. An important feature of this correlation is the novel way in which the geometric parameters are expressed in the correlation. Ratios of these parameters are derived from consideration of the physics of the flow and heat transfer in the heat exchangers. This results in a more accurate and physically meaningful correlation which can be applied to a broader range of geometries. The correlation was validated against test data in the literature for round tube and plate fin with good agreement. It was found that the fin type affects the heat transfer and friction factor, and that the number of tube rows has a negligible effect on the friction factor. The number of tube rows effect was found to be influenced by the fin and tube geometries as well as the Reynolds number.Un certain nombre d'équations pour des caractéristiques du rendement des échangeurs de chaleur à tubes ronds plaques à ailettes ont été publiés dans le littérature. Cependant, dans bien des cas, ces corrélations se limitent aux échangeurs à ailette plate dans un nombre limité de configurations géométriques. Dans cette étude, 28 échangeurs de chaleur ont été testés utilisant une soufflerie à circuit ouvert avec une vitesse d'air de 1 à 20 m/s pour plusieurs formes géométriques. Les variations géométriques portaient sur le nombre de rangées de tubes, l'épaisseur des ailettes et la distance séparant des ailettes, des rangées et des tubes. Les ailettes plates et ondulées ont été testées et les corrélations en termes de facteurs j et f en fonction du nombre de Reynolds et les paramètres géométriques des échangeurs de chaleur. Un aspect important de cette corrélation est le façon originale d'exprimer des paramètres géométriques. Les rapports de ces paramètres sont obtenus à partir des flux et transferts de chaleur dans des échangeurs de chaleur. Ce procedé permet d'obtenir une corrélation plus précise et utilé qui s'applique à une gamme de formes géomátriques plus large. La corrélation a été validée en fonction des données concernant des échangeurs à tube et à plaque à ailettes dans la littérature: les données expérimentales et théoriques concordent bien. On a montré que le type d'ailette exerce une influence sur le transfert de chaleur et le facteur de frottement. Cependant, le nombre de rangées de tubes a un effet negligeable sur le coéfficient de frottement. On a démontré que l'effet nombre de rangées de tube est influencé par les géométries des ailettes et des tubes ainsi que par le nombre de Reynolds.  相似文献   

5.
The receiver is an important element in solar energy plants. The principal receiver’s tubes in power plants are devised to work under extremely severe conditions, including excessive heat fluxes. Half of the tube’s circumference is heated whilst the other half is insulated. This study aims to improve the heat transfer process and reinforce the tubes’ structure by designing a new receiver; by including longitudinal fins of triangular, circular and square shapes. The research is conducted experimentally using Reynolds numbers ranging from 28,000 to 78,000. Triangular fins have demonstrated the best improvement for heat transfer. For Reynolds number value near 43,000 Nusselt number (Nu) is higher by 3.5% and 7.5%, sequentially, compared to circular and square tube fins, but varies up to 6.5% near Re = 61000. The lowest friction factor is seen in a triangular fin receiver; where it deviates from circular fins by 4.6%, and square fin tubes by 3.2%. Adding fins makes the temperature decrease gradually, and in the case of no fins, the temperature gradient between the hot tube and water drops sharply in the planed tube by 7%.  相似文献   

6.
An experimental database, covering a wide range of tube and fin geometric dimensions, Reynolds number and including data for water, R11, and ethylene glycol has been compiled for friction factor for single-phase flow in spirally grooved, horizontal microfin tubes. The tubes (21 in all) had inside diameter at the fin root between 6.46 and 24.13 mm, fin height between 0.13 and 0.47 mm, fin pitch between 0.32 and 1.15 mm, and helix angle between 17 and 45 degrees. The Reynolds number ranged from 2.0×103 to 1.63×105. Six earlier friction factor correlations, each based on restricted data sets, have been compared with the database as a whole. None was found to be in good agreement with all of the data. The Jensen and Vlakancic correlation was found to be the best and represents the database within ±21%.  相似文献   

7.
A comparison was made between the predictions of previously proposed empirical correlations and theoretical model and available experimental data for the heat transfer coefficient during condensation of refrigerants in horizontal microfin tubes. The refrigerants tested were R11, R123, R134a, R22 and R410A. Experimental data for six tubes with the tube inside diameter at fin root of 6.49–8.88 mm, the fin height of 0.16–0.24 mm, fin pitch of 0.34–0.53 mm and helix angle of groove of 12–20° were adopted. The r.m.s. error of the predictions for all tubes and all refrigerants decreased in the order of the correlations proposed by Luu and Bergles [ASHRAE Trans. 86 (1980) 293], Cavallini et al. [Cavallini A, Doretti L, Klammsteiner N, Longo L G, Rossetto L. Condensation of new refrigerants inside smooth and enhanced tubes. In: Proc. 19th Int. Cong. Refrigeration, vol. IV, Hague, The Netherlands, 1995. p. 105–14], Shikazono et al. [Trans. Jap. Sco. Mech. Engrs. 64 (1995) 196], Kedzierski and Goncalves [J. Enhanced Heat Transfer 6 (1999) 16], Yu and Koyama [Yu J, Koyama S. Condensation heat transfer of pure refrigerants in microfin tubes. In: Proc. Int. Refrigeration Conference at Purdue Univ., West Lafayette, USA, 1998. p. 325–30], and the theoretical model proposed by Wang et al. [Int. J. Heat Mass Transfer 45 (2002) 1513].  相似文献   

8.
This paper presents a comprehensive comparison of eight previously proposed correlations with available experimental data for the frictional pressure drop during condensation of refrigerants in helically grooved, horizontal microfin tubes. Calculated values are compared with experimental data for seven refrigerants (R11, R123, R134a, R22, R32, R125 and R410A) and eight tubes and with mass velocity from 78 to 459 kg/m2 s. The tubes had inside diameter at the fin root between 6.41 and 8.91 mm; the fin height varied between 0.15 and 0.24 mm; the fin pitch varied between 0.34 and 0.53 mm and helix angle between 13 and 20°. The results show that the overall r.m.s. deviations of relative residuals of frictional pressure gradient for all tubes and all refrigerants taking together decreased in the order of the correlations of Nozu et al. [Exp. Therm. Fluid Sci. 18 (1998) 82], Newell and Shah [Refrigerant heat transfer, pressure drop, and void fraction effects in microfin tubes. In: Proc. 2nd Int. Symp. on Two-Phase Flow and Experimentation, vol. 3. Italy: Edizioni ETS; 1999. p. 1623–39], Kedzierski and Goncalves [J. Enhanced Heat Transfer 6 (1999) 161], Cavallini et al. [Heat Technol. 15 (1997) 3], Goto et al. (b) [Int. J. Refrigeration 24 (2001) 628], Choi et al. [Generalized pressure drop correlation for evaporation and condensation in smooth and microfin tubes. In: Proc. of IIF-IIR Commision B1, Paderborn, Germany, B4, 2001. p. 9–16], Haraguchi et al. [Condensation heat transfer of refrigerants HCFC134a, HCFC123 and HCFC22 in a horizontal smooth tube and a horizontal microfin tube. In: Proc. 30th National Symp. of Japan, Yokohama, 1993. p. 343–5], and Goto et al. (a) [Int. J. Refrigeration 24 (2001) 628], i.e., this final correlation (Goto et al. (a)) gives the best overall representation of the data.  相似文献   

9.
Pressure drop of single-phase turbulent flow inside herringbone microfin tubes of different fin dimensions has been measured experimentally to develop a general correlation of single-phase friction factor for the herringbone tubes. Water has been used as a working fluid and the mass flow rate has been varied from 0.03 to 0.2 kg/s, where the Reynolds number range is 104 to 6.5 × 104. Comparison of experimental data of the herringbone microfin tubes with those of helical microfin and smooth tubes shows that pressure drop of the herringbone tube is significantly higher than the helical and smooth tubes depending on the fin geometric parameters and mass velocity of the working fluid. Through semi-analytical approach and using the present experimental data, a new correlation of single-phase friction factor for the herringbone microfin tubes has been proposed incorporating the effects of fin geometric parameters. The proposed correlation can predict the experimental data within ±10%.  相似文献   

10.
An experimental study on the air-side heat transfer and pressure drop characteristics for multi-louvered fin and flat tube heat exchangers has been performed. For 45 heat exchangers with different louver angles (15–29°), fin pitches (1.0, 1.2, 1.4 mm) and flow depths (16, 20, 24 mm), a series of tests were conducted for the air-side Reynolds numbers of 100–600, at a constant tube-side water flow rate of 0.32 m3/h. The inlet temperatures of the air and water for heat exchangers were 21 and 45°C, respectively. The air-side thermal performance data were analyzed using effectiveness-NTU method for cross-flow heat exchanger with both fluid unmixed conditions. The heat transfer coefficient and pressure drop data for heat exchangers with different geometrical configurations were reported in terms of Colburn j-factor and Fanning friction factor f, as functions of Reynolds number based on louver pitch. The general correlations for j and f factors are developed and compared to other correlations. The f correlation indicates that the flow depth is one of the important parameters for the pressure drop.  相似文献   

11.
The present paper discusses the results of an extensive investigation about the performance of various fin configurations, carried out in the Luve Contardo experimental facilities and aimed to enhance the heat transfer capabilities of air-cooled condensers and liquid coolers. Test results here discussed are relative to 15 coil prototypes, having the same tube and fin geometry (25×21.65 mm staggered 5/8” tube banks, 2 mm fin spacing) but different fin surface geometry, from flat to wavy to louvered to “winglet”. Different rates of heat transfer and pressure loss enhancement were obtained, also depending on the quality of the pressing process. General approaches to evaluate the “goodness” of one fin design with respect to another one provided questionable results: pressure loss influence on the air flow cannot be properly evaluated unless the actual fan head curve and the coil dimensions (front area and rows number) are stipulated. The performance of air-cooled condensers was therefore predicted and compared, for various fin design and for coil arrangements of practical interest. The type of fin adopted strongly influences the heat exchanger performance and louvered fins generally provide the best results.  相似文献   

12.
J.R. Olson  G.W. Swift 《低温学》1997,37(12):769-776
Acoustic streaming is investigated in tapered tubes with axially varying temperature, in the boundary layer limit. By appropriately shaping the tube, the streaming can be eliminated. Experimental data demonstrate that an orifice pulse tube refrigerator with a conical pulse tube whose cone angle eliminates streaming has more cooling power than one with either a cylindrical pulse tube or a conical pulse tube with twice the optimum cone angle.  相似文献   

13.
管翅式换热器的翅片优化为研究热点,而对管型的研究较少.本文提出一种与圆管相同水力半径的异型管的设计方法,建立了异型管管翅式换热器空气侧换热的数值计算模型,研究了管型、迎风方向和翅片间距对异型管管翅式换热器性能的影响.结果表明:对于双排的异型管换热器,第一排管大圆迎风,第二排管小圆迎风时,空气流动最均匀,压降最低,是综合...  相似文献   

14.
In this study, condensation heat transfer coefficients (HTCs) were measured on a horizontal plain tube, low fin tube, and Turbo-C tube at the saturated vapor temperature of 39 °C for R22, R407C, and R410A with the wall subcooling of 3–8 °C. R407C, a non-azeotropic refrigerant mixture, exhibited a quite different condensation phenomenon from those of R22 and R410A and its condensation HTCs were up to 50% lower than those of R22. For R407C, as the wall subcooling increased, condensation HTCs decreased on a plain tube while they increased on both low fin and turbo-C tubes. This was due to the lessening effect of the vapor diffusion film with a rapid increase in condensation rate on enhanced tubes. On the other hand, condensation HTCs of R410A, almost an azeotrope, were similar to those of R22. For all refrigerants tested, condensation HTCs of turbo-C tube were the highest among the tubes tested showing a 3–8 times increase as compared to those of a plain tube.  相似文献   

15.
The objective of this study is to provide experimental data that can be used in the optimal design of flat plate finned-tube heat exchangers with large fin pitch. In this study, 22 heat exchangers were tested with a variation of fin pitch, number of tube row, and tube alignment. The air-side heat transfer coefficient decreased with a reduction of the fin pitch and an increase of the number of tube row. The reduction in the heat transfer coefficient of the four-row heat exchanger coil was approximately 10% as the fin pitch decreased from 15.0 to 7.5 mm over the Reynolds number range of 500–900 that was calculated based on the tube diameter. For all fin pitches, the heat transfer coefficient decreased as the number of tube row increased from 1 to 4. The staggered tube alignment improved heat transfer performance more than 10% compared to the inline tube alignment. A heat transfer correlation was developed from the measured data for flat plate finned-tubes with large fin pitch. The correlation yielded good predictions of the measured data with mean deviations of 3.8 and 6.2% for the inline and staggered tube alignment, respectively.  相似文献   

16.
In this study, external condensation heat transfer coefficients (HTCs) are measured for nonazeotropic refrigerant mixtures (NARMs) of HFC32/HFC134a and HFC134a/HCFC123 on a low fin and Turbo-C tubes. All measurements are taken at the vapor temperature of 39 °C with the wall subcooling of 3–8 °C. Test results showed that condensation HTCs of NARMs on enhanced tubes were severely degraded from the ideal values showing up to 96% decrease. HTCs of the mixtures on Turbo-C tube were degraded more than those on low fin tube such that HTCs of the mixtures at the same composition were similar regardless of the tube. The mixture with larger gliding temperature differences (GTDs), HFC134a/HCFC123, showed a larger heat transfer reduction from the ideal values than the mixture with smaller GTDs, HFC32/HFC134a. Heat transfer enhancement ratios of the enhanced tubes with NARMs were almost 2 times lower than those with pure refrigerants and they decreased more as the GTDs of the mixtures increased.  相似文献   

17.
In this study, nucleate boiling heat transfer coefficients (HTCs) of HCFC22, HFC134a, HFC125, HFC32 were measured on a low fin, Turbo-B, and Thermoexcel-E tubes. All data were taken at the liquid pool temperature of 7 °C on horizontal tubes of 152 mm length and 18.6–18.8 mm outside diameter at heat fluxes of 10–80 kW m−2 with an interval of 10 kW m−2 in the decreasing order of heat flux. For a plain and low fin tubes, refrigerants with higher vapor pressures showed higher nucleate boiling HTCs consistently. This was due to the fact that the wall superheat required to activate given size cavities became smaller as pressure increased. For Turbo-B and Thermoexcel-E tubes, HFC125 showed a peculiar behavior exhibiting much reduced HTCs due to its high reduced pressure. The heat transfer enhancement ratios of the low fin, Turbo-B, and Thermoexcel-E tubes were 1.09–1.68, 1.77–5.41, 1.64–8.77 respectively in the range of heat fluxes tested.  相似文献   

18.
水平管外二氧化碳膜状凝结传热分析   总被引:3,自引:0,他引:3  
综述了水平低翅片管外凝结传热的基本模型,阐述了二氧化碳制冷剂的物性特点,讨论了表面张力与凝液滞留角及二氧化碳管外凝结换热系数的关系,分析了翅片密度、环形翅片管尺寸对翅片效率、滞留角、凝结换热系数以及传热增强比的影响,优化了外翅片管的齿高与齿距,并求得相应的强化传热增强比.结果表明,对于根径为20mm的低翅片管,最佳翅片密度为每米435个翅片,最佳齿高为5.1mm,最佳齿距2.3mm.  相似文献   

19.
十二排圆形翅片管换热器的传热与流动特性研究   总被引:1,自引:0,他引:1  
詹伟民  简弃非 《四川制冷》2014,(3):265-269,280
采用数值计算方法研究12排大管圆形翅片表面空气侧流体的流动特性,获得不同雷诺数下圆形翅片的速度分布云图、温度分布云图和流线分布图,并将模拟的结果与实验和实验关联式分别进行验证。研究结果表明:翅片间距为9.6mm第一排管壁侧和翅片表面的传热系数分别是翅片间距为2.4mm的1.67和0.97倍;前面六排翅片表面和管壁表面的传热系数具有很强的波动,而在第六排后翅片表面和管壁表面的传热系数趋向于稳定。  相似文献   

20.
In a fin-tube heat exchanger the contact between fin collar and tube surface is obtained through mechanical expansion of tubes. Since the interfaces between the tubes and fins consist partially of metal-to-metal contact and partially of air, the features of heat transfer through the contact interfaces have not been fully investigated. The present study aims at the development of a new tool including an experiment and a numerical calculation for the estimation of the thermal contact conductance between the fin collar and tube surface, and pursues the evaluation of the factors affecting the thermal contact conductance in a fin-tube heat exchanger. Heat exchangers fabricated for the current study have been put to the test for heat balance in a vacuum chamber with water as an internal fluid. And a finite difference numerical scheme has been used for the data reduction of the experimental data to evaluate the thermal contact conductance. Fin-tube heat exchangers employed in the current research are of tube diameter of 7 mm with different tube expansion ratios, fin spacings, and fin types. The results of the present study imply that these parameters as well as hydrophilic fin coating have a significant effect on the thermal contact conductance. It has been discovered that the portion of the thermal contact resistance is not negligible compared with the total thermal resistance in a fin-tube heat exchanger, and this means that in order to reduce the thermal contact resistance thoughtful care should be taken in fabricating heat exchangers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号