首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
加酶超声提取核桃抗氧化肽工艺优化   总被引:1,自引:0,他引:1  
实验利用脱脂核桃粕为原料,在加酶提取核桃抗氧化肽工艺基础上,采用超声辅助技术,研究了超声辅助加酶提取核桃抗氧化肽的最佳提取条件。以对DPPH自由基清除率为考察指标,在单因素实验基础上进行正交实验优化超声辅助加酶提取核桃抗氧化肽工艺。结果表明:加酶超声提取核桃抗氧化肽的最优工艺为:酶解时采用Alcalase2.4L碱性蛋白酶,料液比(核桃粕:缓冲液)1:20,[E]/[S]为13:500、pH9、酶解温度49℃的条件下酶解2h;超声功率150W,超声时间20min,超声温度50℃,在此条件下制备的核桃抗氧化肽对对二苯代苦味肼基自由基(DPPH·)的清除率达65.11%,抗氧化肽产率62.37%。  相似文献   

2.
张娅妮 《中国油脂》2021,46(10):18-23
将核桃饼脱脂、碱溶酸沉制备核桃蛋白,再利用碱性蛋白酶对核桃蛋白酶解,采用单因素实验研究底物质量分数、酶解pH、酶用量、酶解温度、酶解时间对水解度的影响,在此基础上采用正交实验对酶解工艺条件进行优化,同时测定了酶解产物的溶解特性、乳化特性和起泡特性。结果表明:碱性蛋白酶酶解核桃蛋白最优酶解条件为底物质量分数5.0%、酶解pH 9.0、碱性蛋白酶(活性为10 000 U/g)用量4.0%、酶解温度50 ℃、酶解时间2 h;相较核桃蛋白,不同水解度的核桃蛋白酶解产物的表面疏水性下降,溶解特性、乳化特性和起泡特性提高。  相似文献   

3.
高盼 《中国油脂》2021,46(1):52-56
以提高核桃蛋白产品的附加值为目的,探索核桃蛋白制备工艺。利用单因素实验和正交实验分别对水酶法结合超声法制备核桃蛋白工艺和糖化酶处理纯化核桃蛋白工艺条件进行优化。结果表明:核桃蛋白的最佳制备工艺条件为料液比1∶20、酶解时间2.0 h、加酶量2.0%、温度50℃、p H9.0,在此条件下核桃蛋白得率为78.16%,蛋白质含量为82.53%;核桃蛋白的最佳纯化工艺条件为酶解温度50℃、pH 4.5、酶解时间140 min、加酶量0.4%,在此条件下,核桃蛋白纯度为94.16%。  相似文献   

4.
为获得优质的核桃蛋白血管紧张素转化酶(ACE)抑制肽的制备原料及优化其制备工艺,采用连续提取法从脱脂核桃粕中依次分离出清蛋白、球蛋白、醇溶蛋白、谷蛋白-1和谷蛋白-2 5种组分蛋白,测定5种组分蛋白的占比及ACE抑制率,以ACE抑制率最大的组分蛋白作为原料采用酶解法制备ACE抑制肽,在筛选出最适酶解用酶基础上,采用单因素试验与响应面试验优化酶解制备核桃蛋白ACE抑制肽的工艺。结果表明:5种组分蛋白中谷蛋白-1占比仅次于谷蛋白-2,且其ACE抑制率最高,以核桃谷蛋白-1为原料,在筛选出胃蛋白酶作为酶解用酶基础上,经工艺优化得到最优的酶解法制备核桃谷蛋白-1 ACE抑制肽的工艺条件为酶解温度46℃、酶解时间6 h、酶用量4.2%(以底物质量计)、酶解pH 1.6,在该条件下所得核桃谷蛋白-1酶解液的ACE抑制率为(50.08±2.34)%。因此,核桃谷蛋白-1经胃蛋白酶酶解可生产ACE抑制活性较高的核桃多肽。  相似文献   

5.
采用超声辅助复合酶法制备核桃抗氧化肽,超声辅助酶解最佳工艺为复合酶添加量3%,酶解温度50℃,酶解p H 7.5,酶解时间70 min,超声功率150 W。利用混料设计对复合酶配比进行优化,确定复合酶质量比为1.42∶1∶2.66。在最优工艺条件下制备的核桃多肽DPPH自由基清除率为84.94%,其抗氧化能力低于维生素C,与维生素E接近。  相似文献   

6.
为制备蛋白纯度高于90%的核桃分离蛋白,采用糖化酶纯化核桃蛋白,探究了酶解温度、酶解pH、酶解时间、加酶量和料液比5个因素对核桃蛋白提取率和纯度的影响,并与低变性核桃蛋白粉(由核桃仁仅经过脱脂制备)比较考察其氨基酸组成与功能特性。结果表明,核桃蛋白纯化的最佳工艺条件为:加酶量80 U/g,料液比1∶8,酶解温度55℃,酶解时间40 min,酶解pH 5.0。在最优条件下,蛋白纯度为94.37%。制备的核桃分离蛋白氨基酸组成合理,持水性为3.72 g/g,吸油性为1.57 g/g,乳化性为57.60%,均明显优于低变性核桃蛋白粉。研究证明糖化酶纯化法得到的核桃分离蛋白品质较好。  相似文献   

7.
采用超声辅助酶解制备大米多肽,并研究其对酵母细胞增殖性的影响。在单因素试验基础上,对超声辅助酶解制备大米多肽进行工艺优化,确定最优超声辅助酶解工艺:超声功率密度51.8 W/L、超声温度50℃、超声时间15 min。在最优工艺条件下,大米多肽得率为70.57%。对酵母细胞培养增殖显示随着多肽浓度的增加而增强,当多肽浓度达到25 g/L后,酵母细胞增殖效果不再增强;另外超声辅助酶解的大米蛋白多肽作为氮源对酵母细胞培养增殖效果要好于常规酶解。  相似文献   

8.
为获得最佳的制备脱脂核桃蛋白粉的原料,分别以核桃仁和核桃饼为原料,制备脱脂核桃蛋白粉,利用正交实验优化脱脂核桃蛋白粉的制备工艺条件,并测定了脱脂核桃蛋白粉的氨基酸组成。结果表明:脱脂核桃蛋白粉最佳制备工艺条件为以核桃仁为原料、料液比1∶20、超声功率400 W、超声时间90 min、提取次数2次,在最佳条件下脱脂核桃蛋白粉的脱脂率为99.38%,蛋白质分散指数(PDI)为14.88%;通过与FAO/WHO推荐氨基酸摄入组成比较发现,脱脂核桃蛋白粉能基本满足成人的需求,部分满足2~5岁儿童的需求。以核桃仁为原料,可以得到高脱脂率和高PDI的脱脂核桃蛋白粉,且脱脂核桃蛋白粉是具有较高营养价值的植物蛋白源。  相似文献   

9.
为高值化利用油脂加工业的副产物——核桃饼粕,采用碱溶酸沉法从冷榨核桃饼中提取核桃蛋白(walnut protein,WP),以水解度为指标,用单因素和正交实验优化胰蛋白酶的最优酶解工艺;以脱色率和蛋白回收率为指标,确定核桃蛋白酶解液的最佳脱色工艺条件。结果表明,所提取核桃蛋白样品的纯度较高,可用于下一步的酶解和脱色实验。胰蛋白酶酶解核桃蛋白的最优条件为:pH7.5、底物浓度3%(W/V)、温度55 ℃、加酶量6 250 U/g蛋白质、酶解时间5 h。在此条件下核桃蛋白的水解度可达21.08%。活性炭对核桃蛋白酶解液的最优脱色工艺为:pH为4.5、活性炭用量为1.2%(W/V)、温度为45 ℃、脱色时间为90 min。在此条件下脱色率为78.05%,蛋白回收率为82.16%,加权综合评分为80.11分。优化了胰蛋白酶水解核桃蛋白和酶解液脱色的工艺,可为核桃饼粕的开发利用提供借鉴。  相似文献   

10.
酶解条件对核桃多肽抗氧化活性的影响   总被引:2,自引:0,他引:2  
以核桃蛋白粉为原料制备核桃蛋白抗氧化活性肽,分别采用中性蛋白酶、碱性蛋白酶、木瓜蛋白酶对核桃蛋白进行酶解,测定了不同酶作用下的核桃多肽抗氧化活性,确定碱性蛋白酶是酶解核桃蛋白的最适蛋白酶。研究了酶解温度、酶解时间、酶解pH、底物浓度、酶添加量等酶解条件对酶解产物抗氧化活性的影响。结果表明:不同的酶解条件对酶解产物核桃多肽的抗氧化活性有显著影响,最佳酶解条件为:温度50℃,时间120 min,pH8,底物浓度3%,酶添加量3%,在此酶解条件下制得的核桃多肽对羟基自由基和超氧阴离子的清除率分别为53.8%和50.0%,还原能力为51.7%。  相似文献   

11.
以低温压榨后的核桃饼为原料,通过核桃蛋白(肽)粉制备中试生产线进行工艺实践,并给出了详细工艺参数。核桃饼经亚临界低温逆流萃取后,粕粉中残油为0. 92%,蛋白质含量为54%;经核桃蛋白(肽)粉制备工艺后,蛋白粉中蛋白质含量达80%,肽粉中酸溶性蛋白含量达75%;核桃蛋白粉得率为37%,肽粉得率为17. 5%,即每吨脱脂粕粉可获得核桃蛋白粉370 kg或肽粉175 kg;获得的核桃精炼油、蛋白粉、肽粉、酶解渣粉等可直接应用于功能性食品开发,实现了资源综合利用。  相似文献   

12.
该研究以核桃饼粕(WC)、石油醚脱脂核桃饼粕(PEWC)、石油醚及丙酮脱脂核桃饼粕(PEAWC)、核桃饼粕分离蛋白(WCP)、石油醚脱脂核桃饼粕分离蛋白(PEWCP)、石油醚及丙酮脱脂核桃饼粕分离蛋白(PEAWCP)为研究对象,分别采用碱性蛋白酶、胃蛋白酶、胰蛋白酶超声水解,以抗氧化活性为评价指标,筛选最佳的蛋白酶及原料处理方法。结果表明,碱性蛋白酶水解PEWC对OH·、O2-·和DPPH·清除率最高,分别为18.74%、28.44%和79.96%;胰蛋白酶酶解PEWC的总还原力最大;胰蛋白酶水解PEWCP的OH·和DPPH·清除率最高,分别为21.44%和80.22%,但O2-·清除率较低;胃蛋白酶水解PEWCP的O2-·清除率最高,达30.23%;碱性蛋白酶酶解PEWCP的总还原力最大;核桃饼粕经石油醚脱脂后的酶解产物抗氧化活性最高,且以碱性蛋白酶为最佳水解酶。  相似文献   

13.
主要对高蛋白脱脂核桃粉生产工艺流程中的去皮、脱脂、磨浆以及喷雾干燥这四个关键的生产步骤进行了研究,结果表明,用0.1%CaCl_2与0.5%NaOH的复合碱液63℃浸泡核桃仁5min,采用高压小流量清水枪喷淋并结合鼓泡式水流冲击与超声波振荡,三效联合冲洗去皮的方法,对核桃仁损伤程度较小,去皮效果最好,去皮率达97%:核桃仁经两级压榨,饼中残油≤16%;压榨后的核桃粕经两次磨浆,蛋白质的总溶出率为87.63%;控制喷雾干燥过程中进风和出风温度分别为200~230℃、85~90℃,制得的核桃粉水溶性可达95.2%.经本工艺可制备核桃味浓郁,蛋白质含量高于35%,脂肪含量小于26%的高蛋白脱脂核桃粉. ,结果表明,用0.1%CaCl_2与0.5%NaOH的复合碱液63℃浸泡核桃仁5min,采用高压小流量清水枪喷淋并结合鼓泡式水流冲击与超声波振荡,三效联合冲洗去皮的方法,对核桃仁损伤程度较小,去皮效果最好,去皮率达97%:核桃仁经两级压榨,饼中残油≤16%;压榨后的核桃粕经两次磨浆,蛋白质的总溶出率为87.63%;控制喷雾干燥过程中进风和出风温度分别为200~230℃、85~90℃,制得的核桃粉水溶性可达95 2%.经本工艺可制备核桃味浓郁,蛋  相似文献   

14.
以水代法核桃油副产物为原料制备核桃乳,考察pH、离子强度以及稳定剂羧甲基纤维素和果胶的添加量对核桃乳稳定性的影响。在单因素试验的基础上,通过正交试验对制备核桃乳的工艺条件进行优化。结果表明,制备核桃乳的最佳工艺条件为:pH 7,离子强度0. 6 mol/L,羧甲基纤维素添加量0. 3%,果胶添加量0. 1%。在最佳工艺条件下,核桃乳稳定性为97. 25%。  相似文献   

15.
以多肽得率为考察指标,研究核桃饼粕蛋白质的适宜酶解工艺。结果表明,中性蛋白酶在60 ℃,加酶量21 000 U/g,固液比1∶30(g∶mL),pH 9条件下水解核桃饼粕40 min,多肽得率达79%。以感官评分为评价指标,采用混料设计,优化得到核桃蛋白肽枸杞杏仁复合饮品的调配工艺为多肽原液37.48%,复配枸杞汁22.52%,杏仁乳30%,含量为50%的蔗糖10%,用正交试验优化得到核桃蛋白肽枸杞杏仁复合饮品的稳定剂配方为羧甲基纤维素(CMC)0.10%、海藻酸钠0.10%和黄原胶0.10%,按此条件,可用核桃榨油后的核桃饼粕制备获得美味可口、营养丰富和稳定性好的核桃蛋白肽枸杞杏仁复合饮品。  相似文献   

16.
核桃粕、核桃仁酶解物抗氧化活性的研究   总被引:2,自引:1,他引:2  
比较核桃粕、核桃粕蛋白提取物、核桃仁、去皮核桃仁、脱脂核桃仁和脱脂去皮核桃仁酶解物的抗氧化活性。结果表明,各样品酶解物还原力大小顺序为:核桃仁〉核桃粕蛋白提取物〉核桃粕﹥脱脂核桃仁〉去皮核桃仁〉脱脂去皮核桃仁。当底物浓度为10 mg/mL时,核桃仁直接酶解物的还原力达到谷胱甘肽的79.74%。ORAC值大小顺序为:核桃仁〉脱脂核桃仁〉核桃粕蛋白提取物〉核桃粕〉去皮核桃仁〉脱脂去皮核桃仁。核桃仁直接酶解物的ORAC值最大,为1560.75 μmol Trolox equivalent/g Peptide,与等质量的谷胱甘肽的ORAC值相当。各样品对H2O2诱导PC12细胞损伤均有保护效果,其中核桃仁直接酶解物的保护效果最好,当底物浓度为0.10 mg/mL、0.25 mg/mL和0.50 mg/mL时,均比其它样品的细胞存活率高,分别为72.64%、90.43%和84.98%;当底物浓度为1.00 mg/mL时,脱脂核桃仁酶解物的保护效果最好,细胞存活率为85.11%。  相似文献   

17.
响应面法超声波辅助提取核桃蛋白工艺优化   总被引:2,自引:0,他引:2  
敬思群 《食品科技》2012,(2):251-255
以脱脂核桃粕为原料,利用超声波辅助提取制备核桃蛋白。在单因素实验的基础上,根据Box-Behnken的中心组合实验设计原理,运用Minitab15.0数据统计分析软件,采用3因素3水平的响应面分析法,以核桃蛋白浸出率为响应值,研究了超声时间、超声温度、液料比和pH对核桃蛋白浸出率的影响,并优化了提取工艺。确定了超声辅助提取核桃蛋白的最佳工艺条件为:超声时间为19 min,超声温度为46℃,液料比为20:1,pH为8.6,在此条件下核桃蛋白的浸出率达到68.98%。  相似文献   

18.
以临安山核桃仁为原料,结合超声波辅助,研究水酶法提取山核桃油的加工工艺。结果表明,复合酶酶解制取山核桃油的最佳工艺条件:纤维素酶、半纤维素酶、果胶酶、中性蛋白酶4种酶配比为2∶5∶2∶4,料水比1∶5,加酶量1.6%,酶解温度45℃,酶解pH值为7.0,酶反应时间3h。在最佳工艺条件下,山核桃油得率为54.23%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号