首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
多标签图像分类问题是计算机视觉领域的重要问题之一,它需要对图像中的所有标签进行预测.而一幅图像中待分类的标签个数往往不止一个,同时图像中对象的大小、位置和姿态的变化都会对模型的分类性能产生影响.因此,如何有效地提高图像特征的准确表达能力是一个亟需解决的难题.针对上述难题,文中提出了一个新颖的双流重构网络来对图像进行特征...  相似文献   

2.
针对农作物病害图像识别模型存在参数量较大内存占用较多、识别准确率不高及训练速度慢等问题,提出了融合注意力模块的多尺度卷积网络叶片病害图像识别模型。该网络模型基于残差网络模块,利用多尺度卷积取代了传统的单尺度卷积,使得网络加宽以获取更多的特征信息,避免网络堆叠过深引起的过拟合现象;同时为了加快模型训练速度,采用深度可分离卷积代替传统卷积减少模型参数量;将注意力机制引入到残差网络中,增强了模型的关键特征信息的提取能力,从而提高了模型的识别精度。通过对试验数据集进行对比试验,改进网络模型的识别准确率达到99.48%并且模型参数量仅有19.06 MB,试验结果表明所提出的方法能有效地提高模型的识别性能并降低模型参数量,为实现低成本终端运行奠定基础。  相似文献   

3.
食品图像识别方法综述   总被引:1,自引:0,他引:1  
食品与人类的行为、健康和文化等密切相关.社交网络、移动网络和物联网等泛在网络产生了食品大数据,这些大数据与人工智能,尤其是快速发展的深度学习催生了新的交叉研究领域食品计算.作为食品计算的核心任务之一,食品图像识别同时是计算机视觉领域中细粒度视觉识别的重要分支,因而具有重要的理论研究意义,并在智慧健康、食品智能装备、智慧...  相似文献   

4.
为改善自然场景文本检测任务中存在的分割边界粗糙和多尺度文本漏检等问题,提出了一种多尺度特征融合方法。首先,将密集连接型金字塔池化(DenseASPP)和卷积块注意力模块(CBAM)与渐进式尺度扩展网络(PSENet)进行紧密结合,前者作为尺度感知模块,可以提取丰富的多尺度信息,感知不同规模的文本;而后者作为注意力模块,能够突出多尺度信息中的关键特征,改善边界定位。然后,在骨干网络中添加空洞卷积扩大感受野。最后,在后处理阶段采用渐进式扩展算法优化文字行合成。在ICDAR2015和ICDAR2017-MLT数据集上的实验结果表明,综合评估指标F值相较于PSENet分别提升了2.47%和6.57%。可视化结果表明,该方法能够更好地分割文本边界,检测出PSENet漏检的文本。  相似文献   

5.
张凯悦  张鸿 《计算机应用》2021,41(10):3010-3016
针对已有的航运监控图像识别模型C3D里中级表征学习能力有限,有效特征的提取容易受到噪声的干扰,且特征的提取忽视了整体特征与局部特征之间关系的问题,提出了一种新的基于注意力机制网络的航运监控图像识别模型。该模型基于卷积神经网络(CNN)框架,首先,通过特征提取器提取图像的浅层次特征;然后,基于CNN对不同区域激活特征的不同响应强度,生成注意力信息并实现对局部判别性特征的提取;最后,使用多分支的CNN结构融合局部判别性特征和图像全局纹理特征,从而利用局部判别性特征和图像全局纹理特征的交互关系提升CNN学习中级表征的能力。实验结果表明,所提出的模型在航运图像数据集上的识别准确率达到91.8%,相较于目前的C3D模型提高了7.2个百分点,相较于判别滤波器组卷积神经网络(DFL-CNN)模型提高了0.6个百分点。可见所提模型能够准确判断船舶的状态,可以有效应用于航运监控项目。  相似文献   

6.
目的 基于单幅RGB图像的手势姿态估计受手势复杂性、手指特征局部自相似性及遮挡问题的影响,导致手势姿态估计准确率低。为此,提出一种面向单目视觉手势姿态估计的多尺度特征融合网络。方法 1)采用ResNet50(50-layer residual network)模块从RGB图像提取不同分辨率特征图,通过通道变换模块显式地学习特征通道间的依赖关系,增强重要的特征通道信息,弱化次要的特征通道信息。2)在全局回归模块中,通过设计节点间的连接方式融合不同分辨率特征图,以便充分利用图像的细节与整体信息。采用局部优化模块继续提取更深层的特征信息,获得手部关节点的高斯热图,以此修正遮挡等原因造成部分关节点回归不准确的问题。3)计算经通道变换模块处理后的最小特征图,通过全局池化和多层感知机处理该特征图以获得手势类别和右手相对于左手的深度。4)综合以上结果获得最终的手势姿态。结果 采用InterHand2.6M和RHD(rendered handpose dataset)数据集训练多尺度特征融合网络,评估指标中根节点的平均误差和关节点的平均误差,均低于同类方法,且在一些复杂和遮挡的场景下鲁棒性更高。在In...  相似文献   

7.
寻找场景中的有效信息是场景识别领域中的关键性问题.针对构建场景图像的有效表示,提出了一种基于多尺度注意力网络的场景识别方法.通过在模型中融入改进的通道注意力结构,获得值得关注的局部特征和全局特征;同时针对空间注意力计算过程中的信息丢失问题,提出了基于不同尺度的空间注意力结构,利用特征互补得到场景图像的最终表示;并且引入...  相似文献   

8.
在细粒度视觉识别领域,由于高度近似的类别之间差异细微,图像细微特征的精确提取对识别的准确率有着至关重要的影响。现有的相关热点研究算法中使用注意力机制提取类别特征已经成为一种趋势,然而这些算法忽略了不明显但可区分的细微部分特征,并且孤立了对象不同判别性区域之间的特征关系。针对这些问题,提出了基于中层细微特征提取与多尺度特征融合的图像细粒度识别算法。首先,利用通道与位置信息融合中层特征的权重方差度量提取图像显著特征,之后通过通道平均池化获得掩码矩阵抑制显著特征,并增强其他判别性区域细微特征的提取;然后,通过通道权重信息与像素互补信息获得通道与像素多尺度融合特征,以增强不同判别性区域特征的多样性与丰富性。实验结果表明,所提算法在数据集CUB-200-2011上达到89.52%的Top-1准确率、98.46%的Top-5准确率;在Stanford Cars数据集上达到94.64%的Top-1准确率、98.62%的Top-5准确率;在飞行器细粒度分类(FGVCAircraft)数据集上达到93.20%的Top-1准确率、97.98%的Top-5准确率。与循环协同注意力特征学习网络PCA-Net(...  相似文献   

9.
小样本细粒度图像识别是深度学习领域中一个热门的研究课题,其基本任务是在学习有限数量样本的情况下识别出某一大类下的子类别的图像。得益于卷积神经网络的快速发展,小样本细粒度图像识别在精度方面取得了显著的成果,但其性能仍受限于同一子类图像间的高方差以及不同分类任务中判别性特征的差异性。针对上述问题,提出了一种基于判别性特征增强的小样本细粒度图像识别算法(DFENet)。DFENet设计了对称注意力模块来增强类内视觉一致性学习,从而减少背景的影响,提高同类样本之间共享的特征表示的权重。此外,DFENet引入通道维度的判别性特征增强模块,利用支持集样本中同类样本内和不同类样本之间的通道关系进一步挖掘适合于当前任务的判别性特征,以提高识别准确率。在三个经典的细粒度数据集CUB-200-2011,Stanford Dogs, Stanford Cars上进行了广泛的实验。实验结果表明,该方法均取得了有竞争性的结果。  相似文献   

10.
基于特征金字塔网络的目标检测算法没有充分考虑不同目标间的尺度差异以及跨层特征融合过程中高频信息损失问题,使网络无法充分融合全局多尺度信息,导致检测效果不佳.针对这些问题,提出了尺度增强特征金字塔网络.该方法对特征金字塔网络的侧向连接和跨层特征融合方式进行了改进,设计具有动态感受野的多尺度卷积组作为侧向连接来充分提取每一个目标的特征信息,引入基于注意力机制的高频信息增强模块来促进高层特征与底层特征融合.基于MS COCO数据集的实验结果表明,该方法能有效提高各尺度目标的检测精度,整体性能优于现有方法.  相似文献   

11.
针对FSRCNN模型中存在的特征提取不充分和反卷积带来的人工冗余信息的问题, 本文提出了一种基于多尺度融合卷积神经网络的图像超分辨率重建算法. 首先设计了一种多尺度融合的特征提取通道, 解决对图像不同尺寸信息利用不充分问题; 其次在图像重建部分, 采用子像素卷积进行上采样, 抑制反卷积层带来的人工冗余信息. 与FSRCNN模型相比, 在Set5和Set14数据集中, 2倍放大因子下的PSNR值和SSIM值平均提高了0.14 dB、0.001 0, 在3倍放大因子下平均提高0.48 dB、0.009 1. 实验结果表明, 本文算法可以更大程度的保留图像纹理细节, 提升图像整体重建效果.  相似文献   

12.
岩心聚焦离子束扫描电镜(FIB-SEM)图像存在灰度分布不均及孔隙内局部高亮等现象,采用传统图像分割算法所得孔隙分割精度较低,而基于轮廓的分割算法需对孔隙进行人工标记,操作繁琐且无法精确提取孔隙。提出一种利用卷积神经网络的端到端岩心FIB-SEM图像分割算法。结合光流法与分水岭分割图像标注法构建岩心FIB-SEM数据集,联合ResNet50残差网络、通道和空间注意力机制提取特征信息,采用改进的特征金字塔注意力模块提取多尺度特征,利用亚像素卷积模块经上采样获取更精细的孔隙边缘并恢复为原始分辨率。实验结果表明,与阈值分割算法和基于主动轮廓的岩心FIB-SEM分割算法相比,该算法分割精度更高且无需人工操作,其平均像素精度和平均交并比分别达到90.00%和85.81%。  相似文献   

13.
针对目前提高图像分辨率的卷积神经网络存在的特征提取尺度单一以及梯度消失等问题,提出了多尺度残差网络的单幅图像超分辨率重建方法.采用多尺度特征提取和特征信息融合,解决了对图像细节特征提取不够充分的问题;将局部残差学习和全局残差学习相结合,提高了卷积神经网络信息流传播的效率,减轻了梯度消失现象.在Set5、Set14和BS...  相似文献   

14.
数字图像在传递信息中起着重要的作用,图像超分辨率技术能丰富图像的细节信息.针对许多网络对低分辨率图像的有效特征复用不足和参数量过大的问题,本文结合不同大小的卷积核以及注意力残差机制构建图像超分辨率网络,用3个有差别尺度的卷积层来提取图像的特征,其中第2和第3层用小卷积核替代大的卷积核,对3层卷积融合之后引入注意力机制,...  相似文献   

15.
鉴于Inception-v3网络参数量过大的问题,本文提出了一种有效的手势图像识别方法,能够满足在模型参数量较少的情况下高精度手势识别的需求.本文利用Inception-v3的结构,对原Inception-v3的Inception模块重新进行设计,降低学习的参数量和难度,结合残差连接,保护信息的完整性,防止网络退化,引入注意力机制模块,让模型聚焦于有用的信息而淡化无用信息,在一定程度上也防止了模型的过拟合,并且在模型中进行上采样与低层特征进行特征融合,融合后的特征比原输入特征更具有判别能力,进一步提高模型的准确率.实验结果表明改进的Inception-v3网络的参数量仅为1.65 M,而且拥有更高的准确率和更快的收敛速度.将ASL手语数据集与孟加拉手语数据集分别打乱,然后按照4:1的比例单独划分出训练集和验证集.改进的Inception-v3在ASL手语数据集与孟加拉手语数据集上的识别率分别达到了100%和95.33%.  相似文献   

16.
为解决火焰图像识别在边缘设备,移动端设备环境下模型体积大,准确率低,实时性能差的问题.首先选取ShuffleNetV2作为轻量化主干神经网络,保证模型的实时性;其次,设计了一种新的注意力模块SCDAM (space and channel dual attention module)去同时考虑通道和空间的关联性,针对不同特征的重要程度去赋予不同权重并有效提高模型精度;然后,设计了一种多尺度特征融合模块,使提取到的特征在空间尺度上更加丰富,加强网络对不同尺度的适应性;最后将SCDAM模块以及多尺度模块引入到ShuffleNetV2中并利用迁移学习方式优化模型参数,进一步提高模型精度.在参数量和计算量仅有微量增加的情况下,本算法的精度比ShuffleNetV2提升了3.2%,且单次推理速度仅耗时8.7 ms.实验证明,该算法更加适合应用在计算资源有限情况下,如火药火焰的识别与监控.  相似文献   

17.
为解决有限训练样本下的高光谱遥感图像分类特征提取不充分的问题,该论文提出了多尺度3D胶囊网络方法来助力高光谱图像分类.相比传统的卷积神经网络,所提出的网络具有等变性且输入输出形式都是向量形式的神经元而非卷积神经网络中的标量值,有助于获取物体之间的空间关系及特征之间的相关性,且在有限训练样本下能避免过拟合等问题.该网络通过3种不同尺度的卷积核操作对输入图像进行特征提取来获取不同尺度的特征.然后3个分支分别接不同的3D胶囊网络来获取空谱特征之间的关联.最后将3个分支得到的结果融合在一起,采用局部连接并通过间隔损失函数得到分类结果.实验结果表明,该方法在开源的高光谱遥感数据集上具有很好的泛化性能,且相比其他先进的高光谱遥感图像分类方法具有较高的分类精度.  相似文献   

18.
张相芬  刘艳  袁非牛 《计算机工程》2022,48(12):304-311
基于深度学习的医学图像分割对医学研究和临床疾病诊断具有重要意义。然而,现有三维脑图像分割网络仅依赖单一模态信息,且最后一层网络的特征表达不准确,导致分割精度降低。引入注意力机制,提出一种基于深度学习的多模态交叉重构的倒金字塔网络MCRAIP-Net。以多模态磁共振图像作为输入,通过三个独立的编码器结构提取各模态的特征信息,并将提取的特征信息在同一分辨率级进行初步融合。利用双通道交叉重构注意力模块实现多模态特征的细化与融合。在此基础上,采用倒金字塔解码器对解码器各阶段不同分辨率的特征进行整合,完成脑组织的分割任务。在MRBrainS13和IBSR18数据集上的实验结果表明,相比3D U-Net、MMAN、SW-3D-Unet等网络,MCRAIP-Net能够充分利用多模态图像的互补信息,获取更准确丰富的细节特征且具有较优的分割精度,白质、灰质、脑脊液的Dice系数分别达到91.67%、88.95%、84.79%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号