首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 98 毫秒
1.
对快速多极子边界元法中多极子展开式的数值计算进行了研究,建立四点单级传递关系与多极传递关系模型。通过与格林函数及其法向导数理论值的比较,考察两种传递情况下,多极子展开式在吸声材料介质及空气介质中的计算精度。结果表明,复波数展开式的求解精度与截断项数的大小相关,而且当复波数虚部值与展开点间距离乘积过大时,展开式值开始与真值相背离。最后提出了解决此问题的两种方法。此外,以膨胀腔阻性消声器传递损失计算为例,验证了本文方法的有效性与可行性。  相似文献   

2.
将快速多极子边界元法应用于船舶舱室噪声预测,考虑振动、刚性以及阻抗三类边界条件,计算得到舱室表面的辐射声压云图以及监测点处的声压级,通过和Virtual. Lab Acoustic软件计算结果比较验证方法的正确性;此外,通过和传统边界元法在总计算时间上的比较,表明快速多极子边界元法在计算大尺度声学问题中的高效性。  相似文献   

3.
边界元方法对于无限域中弹性波散射求解具有独特优势,但求解矩阵的非对称稠密特征极大限制了该方法在大规模实际工程中的应用。为此,基于单层位势理论,结合快速多极子展开技术,通过对球面压缩波和剪切波势函数的泰勒级数展开,建立一种新的快速多极间接边界元方法,以实现大规模弹性波三维散射的精确高效模拟。算例分析表明所提方法能够大幅度降低计算时间和存储量,可在目前普通计算机上快速实现上百万自由度弹性波三维散射问题的快速精确求解。最后以全空间椭球形孔洞群对平面P波、SV波的散射为例,揭示了三维孔洞群周围稳态位移场和应力场的若干分布规律。该文方法对低无量纲频率(ka<5.0)的大规模多体散射问题尤为适合。  相似文献   

4.
采用有限元/快速多极边界元法进行水下弹性结构的辐射和散射声场分析。Burton-Miller法用于解决传统单Helmholtz边界积分方程在求解外边界值问题时出现的非唯一解的问题。该文采用GMRES和快速多极算法加速求解系统方程。针对传统快速算法在高频处效率低和对角式快速算法在低频处不稳定这一问题,该文通过结合这两种快速算法形成宽频快速算法来克服。同时该文通过观察不同参数条件设置下,宽频快速多极法得到的数值结果在计算精度和计算时间上的变化,得到最优的参数组合值。最后通过数值算例验证该文算法的正确性和有效性。  相似文献   

5.
求解方程的稠密矩阵特征极大削弱了传统边界元法在求解大规模实际工程问题中的优势。为此,结合快速多极子展开技术,发展一种新的高精度快速间接边界元方法,用于求解大尺度或高频弹性波二维散射问题。以全空间孔洞周围SH波散射为例,给出了具体求解步骤。算例分析表明该方法具有很高的计算精度和求解效率,同时能够大幅度降低计算存储量,可在目前主流计算机上实现上百万自由度弹性波散射问题的快速求解。最后以半空间中凹陷场地对SH波的高频散射为例,讨论了凹陷周围高频波散射的基本特征,可为峡谷地形中大型工程抗震设计提供部分理论依据。  相似文献   

6.
雷霆  姚振汉  王海涛 《工程力学》2006,23(11):28-32,57
以三维弹性力学问题为例,对快速多极与常规边界元法机群并行计算进行了比较。其中常规边界元法求解方程采用高斯消去法,通过调用标准并行求解函数库ScaLAPACK实现;快速多极边界元法并行计算程序采用ANSIC++语言、调用MPI并行通信库自行编写。两种程序均运行于同一机群并行环境。数值算例表明,在同样的机群条件下,采用快速多极边界元法可使解题规模有数量级的提高,计算速度明显高于常规边界元法,并行效率也优于常规边界元法。  相似文献   

7.
该文将快速多极边界元法用于三维稳态传热问题的大规模数值计算。多极展开的引入使得该算法能够在单台个人电脑上完成30万自由度以上的传热边界元分析。统一展开的基本解能够处理混合边界。广义极小残差法作为快速多极边界元法的迭代求解器,数值算例分析了快速多极边界元法的计算效率。结果表明:快速多极边界元法的求解效率与常规算法相比有数量级的提高;在模拟复杂结构大规模传热问题上将具有良好的应用前景。  相似文献   

8.
二维声场的边界元分析   总被引:1,自引:1,他引:0  
本文将边界元法应用于二维声场分析,给出了以第二类汉克尔函数为基本解的数值计算公式,比较了处理奇异积分的三种不同方法。通过对三种不同边界条件的管道声场和脉动圆柱的辐射声场的计算并与精确解比较,表明了方法是正确而有效的。  相似文献   

9.
司炜  许强 《工程力学》2012,29(10):52-56,62
以二维弹性问题为研究背景, 提出了一种二维新型快速多极虚边界元配点法的求解思想, 即采用新型的快速多极展开和运用广义极小残值法来求解传统的虚边界元配点法方程。相对常规快速多极展开技术, 该文针对二维弹性问题在原有的快速多极虚边界元法展开格式的基础上, 通过引入对角化的概念, 以更新展开传递格式, 欲达到进一步提高计算效率的目的。数值算例说明了该方法的可行性, 计算效率和计算精度。此外, 该文方法的思想具有一般性, 应用上具有扩展性。  相似文献   

10.
针对弹性波二维散射问题,发展一种新的快速多极子基本解方法(FMM-MFS)。方法基于单层位势理论,通过在虚边界上设置膨胀波线源和剪切波线源以构造散射波场,从而避免了奇异性的处理和边界单元离散;结合快速多极子展开技术(FMM),大幅度降低了计算量和存储量,突破了传统方法难以处理大规模散射问题的瓶颈。以全空间孔洞对P、SV波的二维散射为例,给出了具体求解步骤,并在个人计算机上实现了上百万自由度问题的快速精确计算。在方法效率和精度检验基础上,分别以单孔洞和随机孔洞群对平面波(P、SV波)的散射为例进行计算模拟,揭示了孔洞(群)周围弹性波散射的若干重要规律。  相似文献   

11.
This article presents a wideband fast multipole method (FMM) to accelerate the boundary integral equation method for two‐dimensional elastodynamics in frequency domain. The present wideband FMM is established by coupling the low‐frequency FMM and the high‐frequency FMM that are formulated on the ingenious decomposition of the elastodynamic fundamental solution developed by Nishimura's group. For each of the two FMMs, we estimated the approximation parameters, that is, the expansion order for the low‐frequency FMM and the quadrature order for the high‐frequency FMM according to the requested accuracy, considering the coexistence of the derivatives of the Helmholtz kernels for the longitudinal and transcendental waves in the Burton–Muller type boundary integral equation of interest. In the numerical tests, the error resulting from the fast multipole approximation was monotonically decreased as the requested accuracy level was raised. Also, the computational complexity of the present fast boundary integral equation method agreed with the theory, that is, Nlog N, where N is the number of boundary elements in a series of scattering problems. The present fast boundary integral equation method is promising for simulations of the elastic systems with subwavelength structures. As an example, the wave propagation along a waveguide fabricated in a finite‐size phononic crystal was demonstrated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
A new fast multipole boundary element method (BEM) is presented in this paper for large‐scale analysis of two‐dimensional (2‐D) elastostatic problems based on the direct boundary integral equation (BIE) formulation. In this new formulation, the fundamental solution for 2‐D elasticity is written in a complex form using the two complex potential functions in 2‐D elasticity. In this way, the multipole and local expansions for 2‐D elasticity BIE are directly linked to those for 2‐D potential problems. Furthermore, their translations (moment to moment, moment to local, and local to local) turn out to be exactly the same as those in the 2‐D potential case. This formulation is thus very compact and more efficient than other fast multipole approaches for 2‐D elastostatic problems using Taylor series expansions of the fundamental solution in its original form. Several numerical examples are presented to study the accuracy and efficiency of the developed fast multipole BEM formulation and code. BEM models with more than one million equations have been solved successfully on a laptop computer. These results clearly demonstrate the potential of the developed fast multipole BEM for solving large‐scale 2‐D elastostatic problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents a wideband fast multipole boundary element approach for three dimensional acoustic shape sensitivity analysis. The Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem associated with the conventional boundary integral equation method in solving exterior acoustic wave problems. The sensitivity boundary integral equations are obtained by the direct differentiation method, and the concept of material derivative is used in the derivation. The iterative solver generalized minimal residual method (GMRES) and the wideband fast multipole method are employed to improve the overall computational efficiency. Several numerical examples are given to demonstrate the accuracy and efficiency of the present method.  相似文献   

14.
A dual boundary integral equation (BIE) formulation is presented for the analysis of general 3‐D electrostatic problems, especially those involving thin structures. This dual BIE formulation uses a linear combination of the conventional BIE and hypersingular BIE on the entire boundary of a problem domain. Similar to crack problems in elasticity, the conventional BIE degenerates when the field outside a thin body is investigated, such as the electrostatic field around a thin conducting plate. The dual BIE formulation, however, does not degenerate in such cases. Most importantly, the dual BIE is found to have better conditioning for the equations using the boundary element method (BEM) compared with the conventional BIE, even for domains with regular shapes. Thus the dual BIE is well suited for implementation with the fast multipole BEM. The fast multipole BEM for the dual BIE formulation is developed based on an adaptive fast multiple approach for the conventional BIE. Several examples are studied with the fast multipole BEM code, including finite and infinite domain problems, bulky and thin plate structures, and simplified comb‐drive models having more than 440 thin beams with the total number of equations above 1.45 million and solved on a PC. The numerical results clearly demonstrate that the dual BIE is very effective in solving general 3‐D electrostatic problems, as well as special cases involving thin perfect conducting structures, and that the adaptive fast multipole BEM with the dual BIE formulation is very efficient and promising in solving large‐scale electrostatic problems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
A fast multipole boundary element method (BEM) for solving large-scale thin plate bending problems is presented in this paper. The method is based on the Kirchhoff thin plate bending theory and the biharmonic equation governing the deflection of the plate. First, the direct boundary integral equations and the conventional BEM for thin plate bending problems are reviewed. Second, the complex notation of the kernel functions, expansions and translations in the fast multipole BEM are presented. Finally, a few numerical examples are presented to show the accuracy and efficiency of the fast multipole BEM in solving thin plate bending problems. The bending rigidity of a perforated plate is evaluated using the developed code. It is shown that the fast multipole BEM can be applied to solve plate bending problems with good accuracy. Possible improvements in the efficiency of the method are discussed.  相似文献   

16.
A fast multipole boundary element method (FMBEM) extended by an adaptive mesh refinement algorithm for solving acoustic problems in three‐dimensional space is presented in this paper. The Collocation method is used, and the Burton–Miller formulation is employed to overcome the fictitious eigenfrequencies arising for exterior domain problems. Because of the application of the combined integral equation, the developed FMBEM is feasible for all positive wave numbers even up to high frequencies. In order to evaluate the hypersingular integral resulting from the Burton–Miller formulation of the boundary integral equation, an integration technique for arbitrary element order is applied. The fast multipole method combined with an arbitrary order h‐p mesh refinement strategy enables accurate computation of large‐scale systems. Numerical examples substantiate the high accuracy attainable by the developed FMBEM, while requiring only moderate computational effort at the same time. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
18.
A new fast multipole formulation for the hypersingular BIE (HBIE) for 2D elasticity is presented in this paper based on a complex-variable representation of the kernels, similar to the formulation developed earlier for the conventional BIE (CBIE). A dual BIE formulation using a linear combination of the developed CBIE and HBIE is applied to analyze multi-domain problems with thin inclusions or open cracks. Two pre-conditioners for the fast multipole boundary element method (BEM) are devised and their effectiveness and efficiencies in solving large-scale problems are discussed. Several numerical examples are presented to study the accuracy and efficiency of the developed fast multipole BEM using the dual BIE formulation. The numerical results clearly demonstrate the potentials of the fast multipole BEM for solving large-scale 2D multi-domain elasticity problems. The method can be applied to study composite materials, functionally-graded materials, and micro-electro-mechanical-systems with coupled fields, all of which often involve thin shapes or thin inclusions.  相似文献   

19.
The acoustic radiation of general structures with Neumann's boundary condition using Variational Boundary Element Method (VBEM) is considered. The classical numerical implementation of the VBEM suffers from the computation cost associated with double surface integration. To alleviate this limitation, a novel acceleration method is proposed. The method is based on the expansion of the cross influence matrices in terms of multipoles using the expansion of the Green's function in terms of spherical Bessel functions. Since the resulting multipoles are not dependent on the elements locations, large computation time savings are achieved. Moreover, it is shown that by accounting for the monopole, dipole and quadrupole terms in the multipole expansion, the classical convergence criteria usually used in boundary element guarantee convergence of the proposed method. Several numerical examples are presented to demonstrate the efficiency and accuracy of the proposed method. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
A fast multipole boundary element method (FMBEM) for 3D multi-domain acoustic scattering problems based on the Burton-Miller formulation is presented in this paper. A multi-tree structure is designed for the multi-domain FMBEM. It results in mismatch of leaves and well separate cells definition in different domains and complicates the implementation of the algorithm, especially for preconditioning. A preconditioner based on boundary blocks is devised for the multi-domain FMBEM and its efficiency in reducing the number of iterations in solving large-scale multi-domain scattering problems is demonstrated. In addition to the analytical moment, another method, based on the anti-symmetry of the moment kernel, is developed to reduce the moment computation further by a factor of two. Frequency sweep analysis of a penetrable sphere shows that the multi-domain FMBEM based on the Burton-Miller formulation can overcome the non-unique solution problem at the fictitious eigenfrequencies. Several other numerical examples are presented to demonstrate the accuracy and efficiency of the developed multi-domain FMBEM for acoustic problems. In spite of the high cost of memory and CPU time for the multi-tree structure in the multi-domain FMBEM, a large BEM model studied with a PC has 0.3 million elements corresponding to 0.6 million unknowns, which clearly shows the potential of the developed FMBEM in solving large-scale multi-domain acoustics problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号