首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
本研究以大豆分离蛋白(soy protein isolate,SPI)和黄原胶(xanthan gum,XG)为乳化剂及稳定剂制备了水包油乳状液。通过测定14 d储藏期内乳状液的流变学特性,并结合粒径和Zeta-电位,考察了XG浓度对SPI-XG水包油乳状液流变学特性及稳定性的影响。结果表明,XG的添加,明显增加了乳状液的黏度,改善了乳状液的黏弹性行为,促进了凝胶类乳液的形成。其中,XG浓度为0.10%时,在14 d储藏期内粒径变化程度较小,Zeta-电位绝对值较大,频率扫描和降温过程中储能模量(G′)和损耗模量(G″)相对稳定,赋予了乳状液良好的储藏稳定性;随着XG浓度的增加,形成的乳状液的粒径增大,G′和G″相对不稳定,流变学特性不佳。  相似文献   

2.
为了探究单宁酸(tannin acid, TA)、麦芽糊精(maltodextrin, MD)、聚葡萄糖(polydextrose, PD)共价修饰对大豆分离蛋白(soybean protein isolate, SPI)功能特性和结构的影响,采用碱处理法和湿法美拉德反应将TA、MD、PD共价接枝到SPI上,分别得到二元共价复合物(SPI-TA)和2种三元共价复合物(SPI-TA-MD、SPI-TA-PD)。通过十二烷基磺酸钠-聚丙烯酰胺凝胶电泳和反应基团的测定研究SPI-TA、SPI-TA-MD、SPI-TA-PD复合物中共价键的形成以及共价接枝程度。采用紫外吸收光谱和傅里叶变换红外光谱法研究二元、三元共价复合物中SPI结构的变化。通过溶解性、乳化性、起泡性、抗氧化活性、热稳定性和表面疏水性等指标,研究TA、MD、PD的共价接枝对SPI功能性质的影响。结果表明:TA、MD、PD与SPI共价结合改变了SPI的结构,降低SPI二级结构中β-折叠含量;TA接枝当量为(35.56±1.32)μmol/g, MD的接枝度为46.54%,PD的接枝度为32.26%;相比于SPI,SPI-TA-M...  相似文献   

3.
制备黄原胶与面筋蛋白纳米粒协同稳的Pickering乳液,表征Pickering乳液的物理化学性能和微观结构。结果显示:通过黄原胶与面筋蛋白纳米粒协同作用,可制备出稳定性较好的Pickering乳液。低质量分数的黄原胶(0.2%)会促进乳析;当黄原胶质量分数不小于0.3%时,乳液于4 ℃贮存30 d仍无乳析现象;当黄原胶质量分数为1%时,贮存30 d乳液出现析油的现象。不同乳化顺序得到乳液的稳定性不同。乳液M-WG-XG(面筋蛋白纳米粒与玉米油乳化得粗乳液,然后加入黄原胶二次分散)的稳定性最好,同时乳液的平均粒径最小(21.4±0.314)μm。黄原胶的加入增大了乳液的净电荷,乳液的稳定性提高。共聚焦显微镜结果表明,乳液M-WG-XG液滴分布均匀,界面层呈现出多层结构。相比于其他方式制备的乳液,乳液M-WG-XG有更好的黏弹性和离子稳定性。  相似文献   

4.
郭英 《食品科技》2022,(2):279-282
利用菜籽蛋白和黄原胶进行美拉德反应制备菜籽蛋白-黄原胶复合物,评价了菜籽蛋白-黄原胶复合物制备乳状液的乳化性能、Zeta电位、粒径和分层指数以及过氧化值.研究结果表明,与菜籽蛋白制备乳状液相比,菜籽蛋白-黄原胶复合物制备乳状液的乳化性能显著增加.并且,菜籽蛋白-黄原胶复合物能够增加乳状液的负电荷,降低乳状液的粒径值.美...  相似文献   

5.
利用三因素中心复合旋转试验设计的原理,研究亚麻籽胶、黄原胶、大豆分离蛋白添加对肉制品出品率和质构特性的影响。结果表明:亚麻籽胶、黄原胶、大豆分离蛋白的添加均能显著性提高猪肉肠出品率(P0.01),亚麻籽胶和大豆分离蛋白对出品率和黏着性有显著性交互作用(P0.05);大豆分离蛋白的添加使得产品的硬度显著性增加(P0.05);随着黄原胶和大豆分离蛋白的添加,猪肉肠的弹性不断下降,且二者之间有显著性交互作用(P0.05);随着亚麻籽胶的添加,猪肉肠的凝聚性呈极显著性下降趋势(P0.01),但是,随着黄原胶和大豆分离蛋白的添加,凝聚性不断增加,且二者之间有显著性交互作用(P0.05);亚麻籽胶、黄原胶、大豆分离蛋白对猪肉肠的咀嚼性没有显著性影响。  相似文献   

6.
以马铃薯蛋白(PP)和黄原胶(XG)为原料,通过研究不同pH值、热处理条件和PP/XG质量比确定马铃薯蛋白-黄原胶微凝胶(PP-XGM)的最佳制备条件,对该条件下制备的PP-XGM结构进行表征,以动力学稳定性指数(TSI)为指标对其乳化稳定性进行研究.结果表明:PP-XGM的最佳制备条件为PP/XG质量比1:1,pH值...  相似文献   

7.
该研究以大豆分离蛋白作为成膜基质,添加不同量的亚麻籽胶制备多糖-蛋白复合可食用膜。以机械性能、稳定性、阻隔性、光学性能为测定指标,选用模糊综合评价法进行累计加权,探究亚麻籽胶添加量对大豆分离蛋白膜功能特性的影响。当亚麻籽胶添加量为3%时,膜厚、抗拉强度和断裂伸长率比未添加亚麻籽胶的大豆分离蛋白膜分别提升了80.00%、85.38%、285.78%;氧气透过性、水溶性和透光率降低了27.58%、130.08%、10.06%;其隶属度值为0.282 7,膜的综合性能最佳。  相似文献   

8.
本研究制备大豆分离蛋白(Soybean protein isolate,SPI)-卡拉胶-黄原胶三元复合Pickering乳液,考察不同SPI与卡拉胶-黄原胶配比、乳液pH、卡拉胶质量浓度、黄原胶质量浓度以及大豆油内相体积对三元Pickering乳液体系的粒径、Zeta电位、乳化活性指数(Emulsifying activity index,EAI)、乳化稳定性(Emulsifying stability index,ESI)和SPI二级结构的影响,并研究常温贮藏条件下不同内相体积乳液体系的特性变化。结果表明:当SPI与复合多糖的质量浓度比为1:10,pH为9.0,卡拉胶和黄原胶质量浓度均为0.2%,油相体积为10%~85%时,SPI-卡拉胶-黄原胶三元复合Pickering乳液的稳定性均较好,平均粒径达351±24.12 nm,Zeta电位绝对值达99.4±1.4 mV。随着大豆油内相体积从10%增大至85%,Pickering乳液颗粒的粒径分布更加均一、稳定,当油相体积分数为75%时,乳液颗粒分散状态最佳,EAI和ESI达到最大值,SPI α-螺旋和β-折叠含量最高。常温贮藏实验表...  相似文献   

9.
以黄原胶(XG)和大豆分离蛋白(SPI)为试验原料,通过超声波预处理和葡萄糖酸内酯诱导的方式制备XG-SPI复合凝胶,采用流变测试和扫描电镜等方式研究不同浓度XG对SPI凝胶粘弹性能、自修复能力、热稳定性以及微观结构的影响.结果 表明,SPI凝胶是典型的粘弹材料,具有较强的频率依赖性.随着XG浓度(1%~5%)的增加,...  相似文献   

10.
研究不同盐浓度下黄原胶对大豆分离蛋白(SPI)—肌原纤维蛋白(MP)复合体系凝胶特性和结构的影响。结果表明:在0.1,0.3 mol/L NaCl条件下,低含量SPI有利于MP—SPI复合体系的凝胶及提高凝胶持水性;黄原胶也可提高MP—SPI复合凝胶的持水性。环境扫描电镜显示:黄原胶的强持水能力及大豆蛋白的填充起到了凝胶促进作用。在高盐浓度下,SPI的加入,对于MP—SPI复合凝胶强度和持水性均有破坏效应;对于纯MP凝胶,黄原胶的加入会弱化凝胶强度,但可提升凝胶持水性;对于MP—SPI复合凝胶样品,随着黄原胶用量的增加,肌纤维蛋白—大豆蛋白复合凝胶的凝胶强度和持水性均呈现增加趋势。说明多糖—MP—SPI复合体系中,三者相互作用受盐浓度影响显著,在低盐条件下,低浓度大豆蛋白和高浓度黄原胶的加入可较好地改善复合蛋白凝胶性质。  相似文献   

11.
为提高南瓜籽油(PSO)的稳定性,以及提高由单一乳清分离蛋白(WPI)作为乳化剂制备的水包油(O/W)型乳液的稳定性,制备了黄原胶(XG)与乳清分离蛋白协同稳定的南瓜籽油O/W型乳液,探究了黄原胶添加量及添加顺序对乳液性质及其稳定性的影响。结果表明:黄原胶质量浓度为2.0 mg/mL时,乳液平均粒径最小,为(10.53±0.06)μm,而ζ-电位绝对值最大,为(37.92±0.61)mV,乳液稳定性最好;黄原胶添加顺序不同,乳液稳定性有所差别,其中乳液WPI-PSO-XG(乳清分离蛋白与南瓜籽油乳化得粗乳液,再加黄原胶二次分散得到的乳液)的物理和化学稳定性最好;加速氧化实验显示,乳液的过氧化值(POV)及硫代巴比妥酸反应物(TBARS)值均低于南瓜籽油,其中乳液WPI-PSO-XG的POV和TBARS值最低,与南瓜籽油相比,分别降低了16.13 mmol/kg和17.63μmol/L,表现出良好的氧化稳定性。说明南瓜籽油与乳清分离蛋白制备成初乳液,再加入黄原胶,可使乳液稳定性提高。  相似文献   

12.
提高大豆分离蛋白乳化性及乳化稳定性的研究   总被引:9,自引:1,他引:9  
为了拓宽大豆分离蛋白在食品中的应用,提高其乳化性及乳化稳定性。研究了大豆分离蛋白物理、化学和生物改性,并对改性前后大豆分离蛋白的乳化性及乳化稳定性进行了比较。同时也探讨了pH对大豆分离蛋白及其改性物形成乳状液的影响,并利用成膜蛋白质分子所受的相互作用解释了蛋白质的乳化稳定性受外界条件和内部因素所发生的变化。研究发现适度改性可以提高大豆分离蛋白乳化性及乳化稳定性;碱性有利于大豆分离蛋白及其改性物乳化性的提高;而且用吸光值比(K)可较好地表示乳化稳定性.  相似文献   

13.
《食品工业科技》2013,(04):122-124
乳状体系由水相和油相组成,不同的水相添加物显著影响乳状液性质。本实验分离纯化出大豆分离蛋白及其主要组分7S及11S球蛋白,针对水相添加不同大豆蛋白分子即7S、11S、SPI蛋白分子,分析各组分差异对大豆蛋白-磷脂复合乳化体系乳化性、粒径分布、流变性的影响。经研究发现7S相较11S更有助于蛋白-磷脂复合乳化体系的形成及稳定,形成的粒径也更小。   相似文献   

14.
Oleogels can be used to provide solid-like properties without using high levels of saturated fatty acids. In this study, the edible oleogels structure developed based on egg white protein (EWP) (5%) and xanthan gum (XG) (0%, 1%, 0.5%, and 0.75% wt/wt) complex by using aerogels system as a template for oleogel preparation. The effect of pH on the EWP-XG mixture indicated the creation of a soluble complex of EWP-XG in pH 5.5. The Fourier-transform infrared spectroscopy confirmed the interaction between EWP and XG. The amount of absorbed oil was considerably higher in EWP-XG aerogels. SEM showed a soft surface in EWP 5% aerogel, which can be the reason for its less oil absorption. The aerogel and oleogel including more XG concentration had a stronger network structure and created more elastic oleogels. The light microscopy images revealed by increasing of XG concentration, the structure of protein gel mesh became more compact and regular. The XRD patterns of the aerogels did not show any clear differences between crystallinity of the samples. Therefore, it can be concluded that the aerogels based on the structuring of EWP-XG complexes have a high potential as a three-dimensional network for the oil absorption and creating oleogel.  相似文献   

15.
目的:提高疏水性生物活性物质的水溶性和稳定性。方法:利用大米蛋白酶解物(RPH)和黄原胶(XG),以疏水性模型活性物质姜黄素(Cur)为输送对象,构建了RPH-XG-Cur纳米输送体系,测定并分析纳米粒子的包封效果、稳定性、抗氧化性以及形成机制。结果:RPH-XG-Cur纳米粒子的姜黄素包封率为78.40%,粒径74.78 nm,多分散指数0.36,Zeta电位-27.93 mV,添加黄原胶可显著提高纳米粒子的包封性能以及pH和离子强度稳定性;傅里叶红外光谱和荧光光谱分析表明氢键、静电相互作用和疏水相互作用均参与纳米粒子的形成。结论:RPH-XG纳米体系具有作为疏水性生物活性物质纳米输送载体的应用潜力。  相似文献   

16.
通过不同酶解时间得到大豆溶血磷脂,对大豆分离蛋白-溶血磷脂相互作用及其对复合乳化体系乳化特性的影响进行探究,采用荧光光谱法在Stern-Volmer和Van’t Hoff方程基础上对大豆分离蛋白-溶血磷脂荧光猝灭作用、相互结合常数、结合位点及相互作用力类型进行判断,并对复合乳化体系分别进行乳化活性、乳化稳定性的测定及微观结构变化的观察。结果表明:随着磷脂酶A1酶解时间的延长,大豆分离蛋白-溶血磷脂相互作用先增强后下降,乳化特性指标同样基本呈现先升高后降低的趋势,这表明二者的相互作用对乳化特性具有一定影响。其中,当酶解时间为4 h时,二者相互作用最强,乳液的乳化特性表现最佳,这表明适度酶解产生的溶血磷脂会促进其与大豆分离蛋白的相互作用,在水油界面上形成较稳定的界面膜,形成稳定的复合乳状液。  相似文献   

17.
大豆分离蛋白起泡性和乳化性影响因素的研究   总被引:4,自引:0,他引:4  
大豆分离蛋白的乳化性和起泡性与蛋白质、NaCl、卡拉胶、蔗糖和山梨酸钾含量、pH值、加热温度等密切相关。蛋白质质量浓度分别为2.0g/100mL和2.5g/100mL时,大豆分离蛋白乳化性和起泡性分别达到最大值;远离pH4.5,大豆分离蛋白起泡性和乳化性增加;加热温度45℃时起泡性最好,而乳化性最差;氯化钠、卡拉胶、山梨酸钾添加量分别为1.00g/100mL、0.20g/100mL、0.08g/100mL时,起泡性和乳化性好;添加蔗糖会使蛋白质的起泡性下降,而蔗糖添加量6.0g/100mL时乳化性好。  相似文献   

18.
谷氨酰胺转氨酶对大豆分离蛋白溶解性和乳化性的影响   总被引:1,自引:0,他引:1  
以谷氨酰胺转氨酶(Transglutaminase,TG)为交联剂,与大豆分离蛋白(soybean protein isolate,SPI)发生交联反应,通过单因素试验研究热处理温度、TG浓度、交联温度、交联时间、SPI浓度和交联pH值对SPI溶解性和乳化性的影响。结果表明,4%的SPI溶液在70℃下热处理30 min,按照2 U/g SPI的剂量添加TG,在45℃、pH 6.5条件下交联1 h,此时SPI的溶解性、乳化活性和乳化稳定性分别为0.037 g/mL、328.868 cm-1、0.951。与未经处理的4%SPI相比,TG交联SPI的乳化活性和乳化稳定性显著提高,但溶解性显著下降。  相似文献   

19.
本文研究了大豆多糖(SSPS)与乳清分离蛋白(WPI)乳状液静电组装,形成乳状液聚集体,考察了不同浓度的SSPS对WPI-乳状液稳定性与流变特性的影响,以期提高体系的粘弹性,形成高流变特性的食品体系。将不同浓度的大豆多糖与2%乳清分离蛋白乳状液(油相为20%)静电组装,分析乳状液的粒径,Zeta-电位,稳定性指数,流变性质和微观结构。结合剪切流变与微流变技术,深入研究了SSPS对乳清分离蛋白(WPI)乳状液流体特性与结构的影响。结果表明:随着SSPS浓度的增加,WPI乳状液的粒径在添加0.25%SSPS时达到峰值(3350±0.35)nm,而后随着SSPS浓度的增加而降低;Zeta-电位绝对值呈递减的趋势,表明SSPS与WPI间产生静电吸附作用;SSPS静电吸附提高WPI乳状液的稳定性;剪切流变结果表明,SSPS浓度为0.5%时,其粘度最大,并在剪切速率为95.8 s-1处其粘度是WPI乳状液粘度的10倍以上;微流变结果表明,0.5%SSPS-WPI乳状液的MSD曲线出现平台区,表明其弹性指数(EI)与宏观粘度指数(MVI)均显著提高达到最大值。微观结构结果表明,0.5%SSPS-WPI乳状液形成均一的乳状液聚集体。本研究将有助于理解大豆多糖与蛋白质乳状液的相互作用,同时为低脂高流变特性的食品(如蛋黄酱、调味汁、巧克力和植脂奶油等)生产提供理论指导。   相似文献   

20.
The effect of xanthan gum (XG) on solubility and emulsifying properties of soy protein isolate (SPI) was evaluated. The solubility of SPI was increased by addition of XG (p < 0.05). The emulsifying activity of SPI-XG was 4 times higher than that of SPI or XG alone (p < 0.05) and similar to that of bovine serum albumin (BSA) (P > 0.05). The emulsifying stability of SPI-XG dispersions was respectively 3 and 2 times higher than that of SPI and BSA (p < 0.05). The solubility and emulsifying properties of SPI-XG dispersions were stable over a wide range of pH (3.0 to 9.0), ionic strength (0.1 to 1.0M NaCl), and heat (85°C, 1 hr).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号