首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primary and secondary particle sizes of monoclinic hydrous-ZrO2 particles produced by the hydrolysis of various ZrOCl2 solutions, with and without the addition of NaCl, CaCl2, or AlCl3, were measured using X-ray diffraction and transmission electron microscopy in order to clarify the formation mechanisms of primary and secondary particles. The primary particle size of hydrous ZrO2, under a constant ZrOCl2 concentration, decreased monotonously with increasing Cl-ion concentration. On the contrary, the secondary particle size increased monotonously with increasing Cl-ion concentration. The present experimental results revealed that the primary and secondary particle sizes of hydrous ZrO2 are controlled primarily by the concentrations of H+ and Cl ions produced during hydrolysis, and are independent of the type of added metal ions. The formation mechanisms of the primary and secondary particles of hydrous ZrO2 were determined on the basis of the present experimental results.  相似文献   

2.
The secondary particle size of hydrous-zirconia fine particles that have been produced by the hydrolysis of various ZrOCl2 solutions, with and without the addition of NH4OH or HCl, was measured using transmission electron microscopy to investigate the effects of the H+ and Cl−ion concentrations on the formation of secondary particles. The average secondary particle size of hydrous zirconia increased as the H+ion concentration increased, attaining a maximum of 200 nm at an H−ion concentration of 0.44 moldm-3. Further increases in the H+ion concentration then caused a decrease in the average particle size. The present experimental results revealed that the secondary particle size of hydrous zirconia is controlled primarily by the concentration of H+ ions that are produced during hydrolysis. The formation mechanism for the secondary particles in hydrous zirconia was determined on the basis of the present experimental results.  相似文献   

3.
During fracture of ceramics containing tetragonal zirconia particles, a volume of zirconia material on either side of the crack irreversibly transforms to the monoclinic crystal structure. Transformation zone sizes, measured using Raman microprobe spectroscopy, are presented for three sintered ceramics. In a single-phase ZrO2−3.5 mol% Y2O3 material, an upper bound measurement of 5 μm is obtained for the zone size. In the Al2O3/ZrO2 composites studied, the zone size is deduced to correspond to ∼1 grain in diameter. On the basis of the monoclinic concentrations derived from the Raman spectra it is further concluded that only a fraction of the ZrO2 grains within the transformation zone transform, providing indirect evidence for the effect of particle size on the propensity for transformation.  相似文献   

4.
A novel synthesis of amorphous hydrous zirconia nanoparticles was performed in a supercritical carbon dioxide (scCO2) reverse microemulsion, converting a high concentration of a very inexpensive starting material (zirconyl nitrate hydrate) into a product that was then calcined to yield monoclinic zirconia nanoparticles. The amorphous hydrous zirconia precursor particles were obtained by simply adding a precipitating agent to [Zr4+(aq)]/perfluoropolyether/scCO2. Calcination converts the amorphous hydrous zirconia precursor into the oxide, and the corresponding phase changes that occur were confirmed by differential thermal analysis. Some control of particle size and shape (ellipticity) could be achieved by selecting the reaction pressure from within the range over which stable microemulsions are obtained (13.9–17.3 MPa): a higher reaction pressure yields smaller and more spherical particles. This novel route for the synthesis of zirconia nanoparticles is both "green" (environmentally friendly) and economical.  相似文献   

5.
Synthesis of Titanate Derivatives Using Ion-Exchange Reaction   总被引:3,自引:0,他引:3  
Two types of titanate derivatives, layered hydrous titanium dioxide (H2Ti4O9· n H2O) and potassium octatitanate (K2Ti8O17) with a tunnellike structure, were synthesized using an ion-exchange reaction. Fibrous potassium tetratitanate (K2Ti4O9· n H2O) was prepared by calcination of a mixture of K2CO3 and TiO2 with a molar ratio of 2.8 at 1050°C for 3 h, followed by boiling-water treatment of the calcined products for 10 h. The material then was transformed to layered H2Ti4O9· n H2O through an exchange of K+ ions with H+ ions using HCl. K2Ti8O17 was formed by a thermal treatment of KHTi4O9· n H2O. Pure KHTi4O9· n H2O phase was effectively produced by a treatment of K2Ti4O9 with 0.005 M HCl solution for 30 min. Thermal treatment at 250°–500°C for 3 h resulted in formation of only K2Ti8O17.  相似文献   

6.
Electroless Copper Coating of Zirconia Utilizing Palladium Catalyst   总被引:1,自引:0,他引:1  
Electroless Cu coating of zirconia particles using a Pd0 catalyst is investigated in this paper. Uncoated and Cu-coated ZrO2 particles are characterized by various analytical techniques to understand the mechanism of electroless Cu coating of ZrO2 particles, which involves reduction of Pd2+ on ZrO2 particle surfaces by Sn2+ to produce pure metallic Pd0 clusters, which provide catalytic sites for Cu deposition. The concept of XPS core-level binding energy shift due to small cluster size is utilized to predict the size of pure Pd0 clusters. The electroless Cu-coating process can be utilized in the future to produce Cu-doped ZrO2 particles required for various potential applications.  相似文献   

7.
The formation rate and primary particle size of monoclinic, hydrous zirconia particles produced by the hydrolysis of various ZrOCl2 solutions (with and without the addition of HCl, NH4OH, NaCl, CaCl2, or AlCl3) were measured to clarify the effects of the H+ and Cl ion concentrations on the nucleation and crystal-growth processes of primary particles of hydrous zirconia. Chemical-kinetic analyses, to which Avrami–Erofeev's equation was applied, and XRD measurements revealed that both the rate constant and the primary particle size of the hydrous zirconia decreased as the concentrations of H+ and/or Cl ions produced by hydrolysis increased. The nucleation rate per unit of ZrOCl2 concentration and the crystal-growth rate of the primary particles of the hydrous zirconia were determined by analyzing the relationships between the rate constant and primary particle size. The nucleation rate per unit of ZrOCl2 concentration revealed almost no change and remained constant as the H+ and/or Cl ion concentrations increased, except in the case of a slight increase for ZrOCl2 solutions with added HCl. The crystal-growth rate decreased as the H+ and/or Cl ion concentration increased. The present kinetic analyses revealed that the decrease in rate constant with increasing H+ and/or Cl ion concentrations resulted from the decrease in the crystal-growth rate. The decreasing tendency of the crystal-growth rate was attributed to interference with crystal growth by the Cl ions attracted onto the particle surface through the formation of an electric double layer. The formation mechanisms for the primary particles of hydrous zirconia were determined based on the present experimental results.  相似文献   

8.
Monodisperse zirconia particles were prepared by the thermal hydrolysis of mixtures of zirconyl chloride, zirconium hydroxide, and water at high concentrations corresponding to about 5 mol/L Zr. The particles, as first prepared, were temporarily agglomerated spheres composed of primary ultrafine zirconia crystals. The agglomerated particles collapsed and dispersed in water to form a translucent sol. When vacuum dried and followed by heat treatment, they were not dispersible. The size of the agglomerated particles increased with increasing molar ratio of the zirconium chloride in the starting mixture, varying from about 0.2 to 0.6 μm. Using the sample thus obtained, monodisperse tetragonal zirconia particles of about 0.35 μm containing 3 mol% Y2O3 with a relatively uniform composition were obtained by homogeneous precipitation of YOHCO3 by heating with urea and calcination at 800°C.  相似文献   

9.
Tetragonal zirconia solid solutions were prepared by the additions of ceria, titania, germania, and cassiterite into 2-mol%-Y2O3-stabilized t -ZrO2 (2Y-TZP), and the effect of the dopant size on the changes in the Raman spectra of t -ZrO2 was investigated. The frequencies of the Raman modes that were associated with Zr-O bond stretching decreased as doping with the oversized cation (Ce4+) increased and increased linearly as doping with the undersized dopants (Ti4+, Ge4+, Sn4+) increased within the solubility limits of the dopants in 2Y-TZP. The frequency of the 640 cm−1 Raman band decreased as the square root of the unit-cell volume increased, suggesting that the ionic size of dopants governs the Raman mode that is related to the short ZrO bond between two ZrO bonds in t -ZrO2 solid solutions. Although there was no consistent relationship between the change in the tetragonality of t -ZrO2 solid solutions and the tetravalent cation size, the intensity ratio of the Raman modes at 609 and 640 cm−1 ( I 609/ I 640) decreased as the ionic size decreased.  相似文献   

10.
Nano- or submicron In(OH)3 and In2O3 particles of different morphologies were synthesized from a nitrate solution by a homogeneous precipitation process. By using X-ray diffractometer, thermogravimetric analysis, transmission and scanning electron microscopes, and inductively coupled plasma-optical emission spectrometry, the properties of particle growth were analyzed. The results indicated that the kinetics of the hydrolysis reaction of In3+ was a zero-order reaction with an activation energy of 128 kJ/mol, which implied that the reaction was controlled by the decomposition kinetic of urea additive. The growth anisotropic of particles, pH value of reaction solutions, residual In3+ concentration relative to aging time with different temperatures and starting concentrations were reported in this study. Calcination of the hydrate to form In2O3 particles between 300° and 900°C did not greatly change the morphologies of the particles.  相似文献   

11.
Ultrafine tetragonal ZrO2 powder was prepared by hydrothermal treatment at 100 MPa of amorphous hydrous zirconia with distilled water and LiCl and KBr solutions. The resulting powder consisted of well-crystallized particles; at 200°C, the particle size was 16 nm and at 500°C, 30 nm. Under hydrothermal conditions tetragonal ZrO2 appears to crystallize topotactically on nuclei in the amorphous hydrous zirconia.  相似文献   

12.
Samarium ions (Sm2+) incorporated into aluminosilicate glasses by a sol-gel process showed persistent spectral hole burning at room temperature. Gels of the system Na2O-Al2O3SiO2 synthesized by the hydrolysis of Si(OC2H5)4, Al(OC4H9)3, CH3 COONa, and SmCl3·6H2O were heated in air at 500°C, then reacted with H2 gas to form Sm2+ ions. Whereas Al3+ ions effectively dispersed the Sm3+ ions in the glass structure, Na+ ions were not effective. The Al2O3-SiO2 glasses proved appropriate for reacting the Sm3+ ions with H2 gas and exhibited the intense photoluminescence of Sm2+ ions. The reaction of Sm3+ ions with H2 in the Al2O2-SiO2 glasses was determined by first-order kinetics, and the activation energy equaled 95 kJ/mol. At 800°C, the maximum photoluminescence of the Sm2+ ions was achieved within 20 min.  相似文献   

13.
杨卓颖  杨帆  易美桂  向兰 《无机盐工业》2021,53(12):113-116
探究了含镁铝杂质硫酸氧钛溶液[1.0 mol/L TiOSO4+0.5 mol/L MgSO4+0.25 mol/L Al2(SO43+2.4 mol/L H2SO4]的水热水解规律。热力学计算表明:110~150 ℃,加入MgSO4 和Al2(SO43的总体效应使钛的理论水解率略有降低[150 ℃时,纯硫酸氧钛溶液和含镁铝杂质硫酸氧钛溶液的理论水解率分别为99.8%和99.7%,镁铝杂质分别以MgSO4(aq)和Al(OH)2+为主];升高温度有利于含钛组分水解,从110 ℃升高到150 ℃含镁铝杂质硫酸氧钛溶液的理论水解率由99.1%升高到99.7%。实验结果表明:加入MgSO4 和Al2(SO43后钛水解率略有降低(150 ℃时,纯硫酸氧钛溶液和含镁铝杂质硫酸氧钛溶液的水解率分别为99.2%和98.3%),升高温度可显著强化含镁铝杂质硫酸氧钛溶液的水解(110 ℃→150 ℃,68.6%→98.3%),与热力学计算结果相符。在150 ℃水热反应10 h,可制得原始粒径为100~300 nm、团聚粒径为1~3 μm的不规则状偏钛酸,含钛组分水解率达到98.3%。  相似文献   

14.
The effects of Al3+, B3+, P5+, Fe3+, S6+, and K+ ions on the stability of the β-phase and its hydration rate were studied in reactive dicalcium silicate (C2S, Ca2SiO4) synthesized using the Pechini process. In particular, the dependences of the phase stability and degree of hydration on the calcination temperature (i.e., particle size) and the concentration of the stabilizing ions were investigated. The phase evolution in doped C2S was determined using XRD, and the degree of hydration was estimated by the peak intensity ratio of the hydrates to the nonhydrates in 29Si MAS NMR spectra. The stabilizing ability of the ions varied significantly, and the B3+ ions were quite effective in stabilizing the β-phase over a wide range of doping concentrations. The hydration results indicated that differently stabilized β-C2S hydrated at different rates, and Al3+- and B3+-doped C2S exhibited increased degree of hydration for all doping concentration ranges investigated. The effect of the doping concentration on degree of hydration was strongly dependent on the stabilizing ions.  相似文献   

15.
Raman spectroscopy has been used to obtain Raman spectra of yttria-stabilized tetragonal zirconia subject to surface nitridation induced by contact with zirconium nitride. Raman spectra recorded from regions at increasing distance from the source of nitridation have been used to obtain diffusion profiles from samples treated at different times and temperatures. The coupling of X-ray diffraction data previously taken and of the Raman spectra shows that in the samples there is a two-phase region (tetragonal + cubic) near the nitrided surface and that, at larger distance inside the samples, there is only one phase (tetragonal). Fitting of the diffusive profiles in the single-phase tetragonal region with an appropriate diffusion function allows the determination of the diffusion coefficient of nitrogen in tetragonal zirconia which is expressed in terms of the preexponential factor, D 0= (3.98 ± 0.5) × 10−3 cm2/s, and the activation energy, Q = 170 ± 10 kJ/mol.  相似文献   

16.
Previous experiments showed that γ-Al2O3-modified Al powder could continuously react with water and generate hydrogen at room temperature under atmospheric pressure. In this work, a possible physicochemical mechanism is proposed. It reveals that a passive oxide film on Al particle surfaces is hydrated in water. OH ions are the main mobile species in the hydrated oxide film. When the hydrated front meets the metal Al surface, OH ions react with Al and release H2. Because of the limited H-soluble capacity in small Al particles and the low permeability of the hydrated oxide film toward H+ species, H2 molecules accumulate and form small H2 gas bubbles at the Al:Al2O3 interface. When the reaction equilibrium pressure in H2 bubbles exceeds a critical gas pressure that the hydrated oxide film can sustain, the film on the Al particle surfaces breaks and the reaction of Al with water continues. As the surface oxide layer on modified Al particles has a lower tensile strength, the critical gas pressure in H2 bubbles is lower so that under an ambient condition, the reaction of modified Al particles with water is continuous. The proposed mechanism was further confirmed by a new experiment showing that the as-received Al powder could continuously react with water at temperatures above 40°C and under low vacuum, because the vacuum makes the critical gas pressure in H2 bubbles decrease as well.  相似文献   

17.
Monoclinic hydrous-zirconia fine particles that contained cerium(IV) hydroxide (Ce(OH)4) were heated from 200°C to 600°C, to investigate the phase transformation to CeO2-doped tetragonal ZrO2. Both ZrOCl2·8H2O and CeCl3·7H2O were dissolved in aqueous solutions and then boiled to prepare the hydrous-zirconia particles. The Ce(OH)4-containing hydrous-zirconia particles were prepared by adding aqueous ammonia into the boiled solutions. The monoclinic-to-tetragonal ( m right arrow t ) phase transformation of the Ce(OH)4-containing hydrous zirconias was observed at 300°C using X-ray diffraction (XRD). XRD and Brunauer-Emmett-Teller (BET) specific surface area measurements revealed that the Ce(OH)4-containing hydrous zirconias had a tendency to transform from the monoclinic phase to the tetragonal phase at lower temperatures as the primary particle size of the hydrous zirconia decreased and the Ce(OH)4 content increased. These tendencies for the m right arrow t phase transformation agree with the conclusions that have been derived from thermodynamic and kinetic considerations.  相似文献   

18.
Raman spectra have been recorded for glasses in the binary systems CeO2-P2O5 and Pr2O3-P2O5. The cerium phosphate glasses were prepared having different concentrations of CeO2 and the praseodymium phosphate glasses with different ratios of Pr3+ to Pr4+. The spectra indicate that both cerium and praseodymium enter the glass in modifying sites. We see no changes in the Raman spectra with Pr3+/Pr4+ ratio. Measurements of the density and glass transition temperature are also reported.  相似文献   

19.
Monodispersed spherical TiO2 particles were prepared by hydrothermal crystallization and/or calcination of spherical amorphous particles, synthesized by thermal hydrolysis of TiCl4. The crystallized spherical particles were secondary agglomerates of primary nanocrystallites. Different crystallization routes and conditions provided the spherical TiO2 particles with wide particle characteristics, such as the fraction of crystallization, the size and shape of the primary nanocrystallites, and the specific surface area. The photocatalytic activity showed complex dependence on the crystallization routes and conditions. The complex dependence behavior could be explained by combining the effects of the fraction of crystallization, the specific surface area, and the adsorption ability for hydroxyl ions. Especially, in the present study, the hydrothermally crystallized TiO2 particles with large primary nanocrystallites showed the highest photocatalytic activity. The high photocatalytic activity mainly resulted from the high surface adsorption ability for hydroxyl ions, which was closely related to the well-developed (flat and faceted) morphology of primary nanocrystallite.  相似文献   

20.
Direct precipitation of nanometer-sized particles of ceria–zirconia (CeO2–ZrO2) solid solutions with cubic and tetragonal structures was successfully attained from acidic aqueous solutions of cerium(III) nitrate (Ce(NO3)3) and zirconium oxychloride (ZrOCl2) through the addition of ammonium peroxodisulfate ((NH4)2S2O8), because of promotion of the hydrolysis via the oxidation of Ce3+ ions, together with the simultaneous hydrolysis of ZrOCl2 under hydrothermal conditions. Ultrafine CeO2 particles also could be formed from relatively concentrated aqueous solutions of the same trivalent cerium salt in the presence of (NH4)2S2O8 via hydrolysis. The crystallite size and lattice strain of as-precipitated solid solutions varied, depending on the composition within the CeO2–ZrO2 system. Creation of a solid solution of ZrO2 into a fluorite-type CeO2 lattice clearly introduced lattice strain, as a consequence of the decreasing crystallite size. Both the direct precipitation process and the effectiveness of the presence of (NH4)2S2O8 for the synthesis of CeO2–ZrO2 solid solutions were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号