共查询到19条相似文献,搜索用时 78 毫秒
1.
人工神经网络及其在机械加工中的应用实例 总被引:1,自引:0,他引:1
介绍了人工神经网络知识及其在磨削表面粗糙度研究中的应用和建模过程。试验表明神经网络能自适应各种加工条件,具有较高的柔性和智能,能更准确地反映加工因素之间的变化关系,并可推广到其他领域中处理模糊的、非线性的问题。 相似文献
2.
江涛 《机械工人(冷加工)》1991,(10):54-56
电子计算机的问世,对于科学技术、工农业生产、国防部门、社会服务部门都起了巨大的推动作用。尤其是近几年来微型计算机的迅速发展,给“社会的计算机化”开辟了广阔的前景。 相似文献
3.
4.
5.
6.
论述了如何利用计算机对产品进行聚类分析,提高聚类分析的速度和精度,阐明了如何利用产品的加工工艺进行聚类分析,给出了停机准则和程序框图及实例说明。 相似文献
7.
郭澄宇 《机械工人(冷加工)》2000,(7):24-24
超声波清洗已经在多种机械零件的装配前清洗、电镀前清洗、涂装前清洗、热处理过程中、脱酯、除腊、除锈等各个方面得到大量的应用。与常规的清洗手段相比,超声波清洗具有不可比拟的优势:①速度快。超声波的清洗时间通常可以在几十秒到几分钟之内完成。②清洁度高。③适合于复杂零件。声波的特性使得零件的孔、狭缝、内壁等都得到良好的处理。④易于采用环保化的清洗手段。 相似文献
8.
人工神经网络在机械设计中的应用 总被引:3,自引:0,他引:3
本文通过对机械设计专家系统和人工神经网络的讨论,研究了人工神经网络和专家系统技术在机械设计智能系统中的综合应用问题,并提出了人工神经网络在机械设计中的总体应用方案,为进一步研究打下了基础。 相似文献
9.
1 粘接刀具的发展概况刀具的结构型式是影响刀具切削性能与加工质量的重要因素之一。目前常用的刀具结构型式主要有整体式、焊接式、机械夹固式、切削力夹固式等。虽然这些刀具结构型式已在长期的生产应用中趋于成熟 ,但面对日益复杂的加工要求 ,每种结构型式仍不同程度地存在各自的缺点与不足。随着材料科学的发展 ,各种高性能、高硬度、难加工材料不断应用于机械零件 ,对加工这些零件的刀片材料及刀具结构也提出了新的要求。粘接式刀具作为传统刀具结构型式的一种重要补充也得到了发展与应用。早在 2 0世纪 6 0年代初期 ,一些发达国家为… 相似文献
10.
机械加工是对结构复杂的零件进行再加工,加工工艺复杂,设计到模具、光学元件、集成电路、计算机技术等多个领域。金属切削加工是机械加工必不可少的手段,在机械加工过程中选择合理的切削刀具及切削用量是提高机械加工工件质量的保障,研究数控切削加工技术特点,对于提高加工工件精度具有重要的现实意义。 相似文献
11.
12.
Mohammad Ali Marzban Seyed Jalal Hemmati 《The International Journal of Advanced Manufacturing Technology》2017,89(1-4):125-132
Abrasive flow machining (AFM) is one of the non-traditional machining processes applicable to finishing, deburring, rounding of edges, and removing defective layers from workpiece surface. Abrasive material, used as a mixture of a polymer with abrasive material powder, has reciprocal motion on workpiece surface under pressure during the process. In the following study, a new method of AFM process called henceforth abrasive flow rotary machining (AFRM) will be proposed, in which by elimination of reciprocal motion of abrasive material and the mere use of its stirring and rotation of workpiece, the amount of used material would be optimized. Furthermore, AFRM is executable by simpler tools and machines. In order to investigate performance of the method, experimental tests were designed by the Taguchi method. Then, the tests were carried out and the influence of candidate effective parameters was determined and modeled by artificial neural network (ANN) method. To evaluate the ANN results, they were compared with reported results of AFM. An agreement between our ANN results on predictions of AFRM material removal value and surface roughness was observed with AFM data. The results showed through AFRM, in addition to saving of abrasive material, surface finish is achievable same as AFM’s. 相似文献
13.
14.
利用BP神经网络良好的非线性映射能力,建立了普通珩磨和超声珩磨条件下的磨削表面粗糙度预测模型,经过多次网络训练,得到了具有良好性能的BP神经网络。对超声珩磨加工钕铁硼材料表面粗糙度进行了预测,并取得了理想的预测结果。 相似文献
15.
针对传统的机械故障诊断方法的局限性,提出将人工神经网络应用于机械故障诊断中。由于BP算法存在收敛速度慢及易陷入局部极小等缺陷,利用实数编码改进遗传算法对神经网络的权值和阈值进行优化训练,并把训练好的神经网络用于机械振动信号预测及机械故障诊断中。通过对机械设备振动信号的预测,可以及早发现故障,及时消除故障隐患,为企业节省大量的维修时间和维修费用,提高企业的生产率。 相似文献
16.
针对模糊控制系统,构建了相应的人工神经网络,利用matlab6.5平台,对人工神经网络进行了训练,得出了神经网络训练后的的权重和阈值,并对系统进行了仿真。 相似文献
17.
18.
人工神经网络在设备故障诊断中的应用 总被引:4,自引:0,他引:4
介绍了神经网络技术在设备故障诊断中应用的2个主要方向———故障模式识别和诊断专家系统,对应用的方法、特点及存在的问题也作了概略分析。 相似文献
19.
R. Noorossana Sam Davanloo Tajbakhsh A. Saghaei 《The International Journal of Advanced Manufacturing Technology》2009,40(11-12):1227-1238
In many manufacturing cases, engineers are required to optimize a number of responses simultaneously. A common approach for the optimization of multiple-response problems begins with using polynomial regression models to estimate the relationships between responses and control factors. Then, a technique for combining different response functions into a single scalar, such as a desirability function, is employed and, finally, an optimization method is used to find the best settings for the control factors. However, in certain cases, relationships between responses and control factors are far too complex to be efficiently estimated by polynomial regression models. In addition, in many manufacturing cases, engineers encounter qualitative responses, which cannot be easily stated in the form of numbers. An alternative approach proposed in this paper is to use an artificial neural network (ANN) to estimate the quantitative and qualitative response functions. In the optimization phase, a genetic algorithm (GA) is considered in conjunction with an unconstrained desirability function to determine the optimal settings for the control factors. Two manufacturing examples in which engineers were asked to optimize multiple responses from the semiconductor and textile industries are included in this article. The results indicate the strength of the proposed approach in the optimization of multiple-response problems. 相似文献