首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
J.F. Flores  A. Neville  N. Kapur  A. Gnanavelu 《Wear》2009,267(11):1811-1820
In this investigation the microstructure and erosion–corrosion behaviour of a Fe–Cr–C overlay (FeCrC–matrix) produced by plasma transferred arc welding (PTA) and its metal matrix composite (FeCrC–MMC) were assessed. The FeCrC–MMC was obtained by the addition of 65 wt.% of tungsten carbide (WC). The erosion–corrosion tests (ECTs) were carried out using a submerged impinging jet (SIJ); after the ECTs the surface of the overlays was analysed to identify the damage mechanisms. Two different temperatures (20 and 65 °C) and sand concentrations (10 and 50 g/l) were used in a solution of 1000 ppm of Cl and a pH value of 8.5; the conditions were chosen to be representative of the recycling water in the tailings line in the oilsands industry. The FeCrC–matrix showed a dendritic structure and a high concentration of carbides in the interdendritic zone. The addition of the WC reinforcing phase promoted the formation of W-rich intermetallic phases, increased the microhardness values of the matrix phase of the FeCrC–MMC overlay and dramatically improved its erosion–corrosion performance as expected. For the FeCrC–matrix overlay the main erosion–corrosion degradation mechanisms were severe plastic deformation and the formation and removal of material flakes due to consecutive impacts. At 65 °C the dendritic zone was severely corroded in the area of low impact frequency. The FeCrC–MMC showed greater attack of the matrix phase compared to the WC grains; at high sand concentration the WC grains were severely fractured and flattened. The anodic polarisation analysis showed active corrosion behaviour of the FeCrC–MMC at both temperatures and sand concentrations; however the temperature dramatically increased the corrosion process of the surface studied under erosion–corrosion conditions. The paper assesses the degradation mechanisms of both FeCrC–matrix and FeCrC–MMC with the aim of understanding what aspects of MMCs must be adapted for optimum erosion–corrosion resistance.  相似文献   

2.
M. Jones  R.J. Llewellyn 《Wear》2009,267(11):2003-1324
The erosion–corrosion properties of a range of ferrous-based materials that are currently being used or have potential for use in the resources industry have been assessed using a slurry pot erosion–corrosion (SPEC) test rig that has the capability of establishing the separate components of erosion, corrosion and synergy.Testing was performed, at 30 °C, in an aqueous slurry containing 35 wt% AFS 50–70 silica sand and a 3.5 wt% NaCl solution. Erosive action was supplied through high-speed rotation of a rubber-lined impeller.Erosion–corrosion performance of materials evaluated was related to composition/microstructure and hardness. Test data correlated with available service experience.The results showed that the cast Cr white irons with (i) a structure that was essentially a duplex stainless steel containing a distribution of hard carbides and (ii) a near eutectic Cr white iron exhibited the highest erosion–corrosion resistance of the materials tested. The evaluation of the Cr white irons also highlighted the influence of Cr and C levels on the E–C properties of these materials.E–C assessment of selected carbon steels confirmed that the erosion-only rates and synergistic levels showed a general decline with increasing carbon content and hardness. As expected, a low C steel pipe product displayed very mediocre erosion–corrosion behaviour as a consequence of its very low intrinsic corrosion resistance and inferior wear properties. This reflected service experience, however, such products are still being used, due to the comparatively low initial cost.A TiC particle-reinforced AISI 316 stainless steel exhibited an almost 45% improvement in the E–C resistance, when compared with an AISI 316L stainless steel.  相似文献   

3.
Low temperature nitriding of stainless steel leads to the formation of a surface zone of so-called expanded austenite, i.e. by dissolution of large amounts of nitrogen in solid solution. In the present work the possibility of using nitrogen expanded austenite “layers” obtained by gaseous nitriding of AISI 316 as substrate for DLC coatings are investigated. Corrosion and erosion–corrosion measurements were carried out on low temperature nitrided stainless steel AISI 316 and on low temperature nitrided stainless steel AISI 316 with a top layer of DLC. The combination of DLC and low temperature nitriding dramatically reduces the amount of erosion–corrosion of stainless steel under impingement of particles in a corrosive medium.  相似文献   

4.
The application of a ball-cratering method to test three-body abrasive wear of bulk materials in the presence of large abrasive particles has been investigated. Three high-Cr white cast irons (WCIs) with different material properties were used as wear samples. Abrasive slurries contained two types of abrasive particles, silica sand and crushed quartz. Silica sand and crushed quartz particles have similar chemical composition and hardness but differ in sharpness. Wear rates of WCI samples were determined and the worn surfaces were examined by optical microscopy, SEM and Talysurf profilometry.It was found that the ball-cratering test can differentiate between the wear resistances of materials with similar properties. The wear resistance of WCIs in the presence of silica sand increased with increasing the hardness of the wear sample and decreasing the size of carbides in the microstructure. Smaller silica sand particles caused less wear damage than larger silica sand particles, even though the smaller particles were slightly sharper than the larger ones. When silica sand and quartz particles of the same size were used, the angular quartz particles caused much higher wear than the rounded silica sand particles. Surface morphologies of the wear craters on the WCI samples were examined in an SEM and then compared with the morphologies of the worn surfaces from slurry pumps. It was found that the silica sand particles generated surface morphologies similar to those found in the worn slurry pumps. In these surfaces the matrix was preferentially worn out and hard carbides were protruding. Wear surface morphologies produced by the angular quartz particles were different. They consisted of numerous superimposed indents and the microstructure phases were not distinguishable. This indicates that the type of abrasive particles used in ball-cratering testing significantly affects the test outcomes in terms of wear rates and wear surface morphology.  相似文献   

5.
R.C. Barik  J.A. Wharton  R.J.K. Wood  K.R. Stokes   《Wear》2009,267(11):1900-1908
This study aims to understand the physical processes invoked when solid particle erosion occurs in a corrosive media. The literature on wear-corrosion shows some effort has been placed in qualifying the interactions between erosion and corrosion leading to ‘synergistic’, ‘additive’ and ‘antagonistic’ terms. These terms are difficult to quantify experimentally with multiple experiments being required and generate considerable errors often suggesting these interactive terms are negligible. Hence the current work seeks to investigate these interactions, the errors associated with their measurement and gain understanding of the processes involved by careful examination of microstructural and mechanical property changes of surfaces subjected to erosion–corrosion. Cast nickel–aluminium bronze/NaCl solution has been chosen to study as this system has been studied at Southampton for several years. In situ electrochemical, gravimetric and topographical analyses have been evaluated and discussed using microstructural and hardness measurements.  相似文献   

6.
S.S. Rajahram  T.J. Harvey  R.J.K. Wood 《Wear》2009,267(11):1883-1893
The phenomenon of erosion–corrosion has been studied extensively by various investigators but no accurate model has been developed to predict the interactions between erosion and corrosion. This is mainly attributed to the complexity of the interactions that generate either a synergistic or antagonistic wear effect for a particular material in a certain environment. A semi-empirical model has recently been developed at the University of Southampton which incorporates dynamic Hertzian contact mechanics to model the damage during particle impact and accommodates the effect of erodent deforming the surface leading to an increased corrosion activity. The model was found to have good agreement with erosion–corrosion rates of carbon steel. The aim of this paper is to evaluate the robustness of this semi-empirical model by testing it on a passive metal. UNS S31603 was chosen due to its inherent passivity to corrosion. A slurry pot erosion tester was used as the test rig to perform the experiments. It was found that this passive metal produces high synergistic levels when exposed to erosion–corrosion in 0.3 M HCl with variation in erodent concentrations and flow velocities. SEM and surface profilometry show typical ductile material behaviour with cutting mechanism and deformation mechanism occurring simultaneously. A wear map is presented and it is observed that the increase in velocity and sand concentration causes the material to shift from a corrosion–erosion dominated region to an erosion–corrosion dominated region. This paper will also evaluate the semi-empirical model and discuss its applicability in predicting erosion–corrosion.  相似文献   

7.
This paper presents an example-based discussion of erosion–corrosion and flow corrosion processes that have been identified using electrochemical noise measurements. Various single and dual phase corrosion and erosion–corrosion experiments on austenitic stainless steels and various thermally sprayed coatings using jet impingement and pipe flow rigs are discussed. Localised corrosion events, metastable and propagating pitting, passive and general corrosion processes have been identified under various flow conditions of NaCl solutions. Oscillations in the electrochemical potential noise signals have been related to an erosion-enhanced corrosion synergistic effect. Electrochemical noise measurements show responses to electrolyte permeation of the coating, coating erosion penetration and substrate activity under erosion–corrosion conditions.  相似文献   

8.
Xinming Hu  Anne Neville 《Wear》2009,267(11):331-1301
A systematic study of pipeline steel (API X65) degradation due to erosion–corrosion containing sand in a CO2 saturated environment has been carried out. This work focuses on the total material loss, corrosion, erosion and their interactions (synergy) as a function of environmental parameters (temperature, flow velocity and sand content) to enable the critical conditions, which move the damage mechanism from a flow-induced corrosion regime to erosion–corrosion regime, to be determined.The experimental results show that the effect of corrosion in enhancing erosion, often referred to as the synergy, is significant and accounts for a high proportion of the deviation of measured material loss from the prediction derived from established CO2 corrosion models. Ways forward to improve erosion–corrosion prediction are discussed.  相似文献   

9.
A. Neville  B. A. B. McDougall 《Wear》2001,250(1-12):726-735
The economic and effective operation of machinery and plant involved in fluids handling is increasingly dependent on the utilisation of materials that combine high corrosion resistance and good wear resistance. This paper studies two wear–corrosion situations: (1) erosion–corrosion, where the wear is due to impacting solids in a liquid medium and (2) cavitation–corrosion, where the wear is due to impacting liquid micro-jets formed by imploding air bubbles. The characteristics of a commercially pure titanium (CP-Ti) and three alloys in erosion–corrosion and cavitation–corrosion conditions have been studied. The erosion–corrosion characteristics of each material was assessed using an impinging-jet apparatus. The tests were performed at an angle of impingement of 90°C at a particle velocity of 17 m/s and in a saline solution of 3.5% NaCl at 18°C. A series of experiments was conducted to determine the mass loss by combined erosion–corrosion before independently determining the electrochemical corrosion contribution to mass loss. It has been shown that exposure to liquid–solid erosion causes disruption of the passive film on Ti and active corrosion occurs. In contrast, the materials exhibited passive behaviour in static conditions and when exposed to a cavitating liquid only CP-Ti became active. The role of corrosion in these wear–corrosion environments on CP-Ti and Ti-alloys is discussed in this paper.  相似文献   

10.
A mixed liquid–solid lubrication theory is proposed which concerns the effect of solid particle, liquid lubricant and rubbing surface topography. Especially, it focuses on the circumstances when particle diameter, surface composite roughness and oil film thickness are in the same order of magnitude. A mathematical model containing Reynolds equation, particle load carrying equation, asperity contact equation and heat balance equation is constructed to simulate the mixed liquid–solid lubrication. Moreover, the introduction of non-Newtonian constitutive equation and the rheological parameters related to heat and pressure makes the model closer to practical application. Some typical examples have been analyzed to explore the characteristics of mixed liquid–solid lubrication. In these examples, the effects of the mixed liquid–solid lubricant, the particle diameter and mass concentration, the surface composite roughness, and the material properties are discussed. The simulating results are accordant with early experimental researches, which indicated that the mathematical model is in agreement with the practical mixed liquid–solid lubrication. The input parameters in the examples can be adjusted to adapt to versatile applications.  相似文献   

11.
The properties of metallic alloys can be significantly improved by developing non‐equilibrium phases in the microstructures through rapid solidification techniques, thus the characterisation of these unusual structures is extremely important. In this research, the microstructures of three rapidly quenched alloys, namely Ni65.2Nb33.8Zr1.0, Ni54.8Nb31.1Zr14.1 and Ni54.8Nb21.6Zr23.6 (at. %) were investigated in greater detail in order to determine the structures and compositions of their crystalline phases. These crystalline phases were characterised using a combination of scanning electron microscopy, energy dispersive x‐ray spectroscopy, x‐ray diffraction and transmission electron microscopy techniques. The phases were compared to the crystalline structures reported in the literature. Our results indicate some agreement with the Ni–Nb phase diagram and an isothermal section of the Ni–Nb–Zr phase diagram; however, it is detected zirconium solubility in the Ni3Nb phase, as well as, the absence of expected crystalline phases.  相似文献   

12.
This communication describes an investigation of the effect of impact angle on slurry erosion–corrosion of stainless steel using a new slurry erosion rig. With the new apparatus, it is possible to measure the individual erosion events under impact as both electrochemical current/time transients, and mechanical transients through acoustic emission (AE) simultaneously. Each sharp rise observed in the electrochemical current transient under particle impact is accompanied by an AE event. These sharp current rises are attributed to the rupture or removal of the oxide film on the surface by the abrasive particles. The correlation between the current rise and the maximum of the AE event, although scattered, shows an increase with decreasing impact angle. The current transients due to individual erosion events show that on the average, the current rise is greater and the rise time is longer at oblique angles compared with those at normal incidence. The degree of denudation of the metal surface by individual particle impingements, the process which strips the surface of its passivity, increases at more oblique angles. Weight loss measurements demonstrate that the synergistic effect between erosion and corrosion is enhanced by a more oblique angle of impact. The origin of the synergism is discussed.  相似文献   

13.
Titanium alloys have been of great interest in recent years because of their very attractive combination of high strength, low density and corrosion resistance. Application of these alloys in areas where wear resistance is also of importance calls for thorough investigations of their tribological properties. In this work, Ti–6Al–4V and Ti–24Al–11Nb alloys were subjected to dry sliding wear against hardened-steel counter bodies and their tribological response was investigated. A pin-on-disc type apparatus was used with a normal load of 15–45N and sliding speed of 1.88 ms−1. In the steady state, it was demonstrated that Ti–24Al–11Nb had a substantially higher wear resistance (about 48 times) than that of the Ti–6Al–4V alloy tested under a normal load of 45 N. Severe delamination is found to be responsible for the low wear resistance of Ti-6Al-4V. In the case of Ti–24Al–11Nb, two wear mechanisms have been suggested: delamination with a lower degree of severity and oxidative wear. It is thought that the ability of Ti–24Al–11Nb to form a protective oxide layer during wear results in a much lower wear rate in this alloy.  相似文献   

14.
This paper presents an experimental study on the block-on-cylinder wear behavior of an electroplated Ni–P coating immersed in 5% NaCl solution at different temperatures and polarization potentials. The simply immersion corrosion without normal load was performed first, and then the corrosion effect on the wear behavior including friction coefficient, surface roughness and weight loss were discussed. It is found that the morphology nature of the corrosion film has crucial effect on the wear performance of the coating. Moreover, the bath temperature and the polarization potential greatly influence the formation of the corrosion film.  相似文献   

15.
A CFD (computational fluid dynamics) model has been developed to evaluate the effects of particle concentration on the erosion–corrosion of the inner surfaces of a circular pipe of 90° bend at room temperatures. The relative intensity of erosion and corrosion around the pipe geometry results in transitions between various erosion–corrosion regimes, for a given inlet particle concentration. The results indicate that the corrosion-dominated regime at the pipe bend is reduced with an increase in particle concentration. Typical results from the model are shown illustrating how this 3D mapping method can be used to model parameters such as particle concentration on the erosion–corrosion regimes over the surface.  相似文献   

16.
The synergistic effects between abrasion and corrosion for detonation gun (D-gun) sprayed WC–10Co–4Cr coatings have been studied for alkaline conditions. Comparisons between exposed and freshly polished coating surfaces in strong NaOH solutions (pH 11) show that significantly lower wear rates were seen for the exposed surface due to a negative wear–corrosion synergy. The negative synergy was seen to increase with increasing sliding distances for both fresh and exposed surfaces. The physical mechanisms of this negative synergy are discussed. The effect of anodic surface treatments on wear–corrosion to elucidate the influence of corrosion on the negative synergy is also reported.  相似文献   

17.
This study was undertaken to assess in vivo the corrosion in two commercial nickel–titanium (NiTi) orthodontic archwires removed from the oral cavity of patients using fluoride mouthwashes. Five volunteers took part in this study on the corrosion behavior of two brands of NiTi archwires (3M and AO (brand of archwire)) during use of two mouthwashes with neutral sodium fluoride 1.1%, one with acidulated fluoride 1.1%, and one with placebo and a control group. Each patient used one mouthwash in three different periods of time for 1 min a day for 30 days. The archwires were assessed with scanning electron microscopy and atomic force microscopy for qualitative and quantitative analysis. The values obtained with atomic force microscopy (AFM) were submitted to normality test, two‐way analysis of variance, and Tukey's test at a significance level of 5%. The AFM images showed a gradual qualitative increase in the roughness of both types of wire between the treatments: control < placebo < neutral fluoride < acidulated fluoride. The arithmetic average of the roughness and root mean square of the roughness were similar. As for 3M archwires, only the acidulated fluoride group differed statistically from the others. As for AO archwires, the control and placebo groups did not differ from each other, but differed from the other fluoride treatments. The group using neutral fluoride also differed significantly from the acidulated fluoride group. 3M archwires were not affected by daily oral challenges. AO archwires were not affected by daily oral challenges either; their association with fluoride, either neutral or acidulated, increased their roughness.  相似文献   

18.
R.N. Rao  S. Das  D.P. Mondal  G. Dixit 《Wear》2009,267(9-10):1688-1695
This paper describes the results of dry sliding wear tests of aluminium alloy (Al–Zn–Mg) and aluminium (Al–Zn–Mg)–10, 15 and 25 wt.% SiCp composite was examined under varying applied pressure (0.2 to 2.0 MPa) at a fixed sliding speed of 3.35 m/s. The sliding wear behaviour was studied using pin-on-disc apparatus against EN32 steel counter surface, giving emphasis on the parameters such as coefficient of friction, rise in temperature, wear and seizure resistance as a function of sliding distance and applied pressure. It was observed that the wear rate of the alloy was noted to be significantly higher than that of the composite and is suppressed further due to addition of silicon carbide particles. The temperature rise near the contacting surfaces and the coefficient of friction followed reversed trend. Detailed studies of wear surfaces and subsurface deformation have been carried out. The wear mechanism was studied through worn surfaces and microscopic examination of the developed wear tracks. The wear mechanism strongly dictated by the formation and stability of oxide layer, mechanically mixed layer (MML) and subsurface deformation and cracking. The overall results indicate that the aluminium alloy–silicon carbide particle composite could be considered as an excellent material where high strength and wear resistance are of prime importance.  相似文献   

19.
M.R. Thakare  J.A. Wharton  R.J.K. Wood  C. Menger 《Wear》2009,267(11):1967-1977
The micro-scale wear–corrosion interactions of WC-based sintered hardmetals and sprayed coatings are typically investigated by comparing the wear-rates in corrosive environments with neutral (pH 7) conditions and inferring electrochemical activity. However, for a greater understanding of the wear–corrosion interactions, there is a need to examine the repassivation kinetics during micro-abrasion tests under different pH conditions. This paper details in situ electrochemical current-noise measurements performed using a modified micro-abrasion tester to elucidate these wear–corrosion interactions for pH 7–13 conditions for sintered WC–5.7Co–0.3Cr and sprayed WC–10Co–4Cr specimens. Electrochemical measurements and SEM micrographs of worn surfaces are used to detail the degradation process. Discussion will focus on the wear–corrosion interactions present under neutral and alkaline conditions for sintered and sprayed specimens and the influence of microstructure on the electrochemical activity will be detailed.  相似文献   

20.
E. Albertin  A. Sinatora 《Wear》2001,250(1-12):492-501
The effect of carbide volume fraction from 13 to 41% on the wear resistance of high chromium cast irons was evaluated by means of ball mill testing. Martensitic, pearlitic and austenitic matrices were evaluated.

The 50-mm diameter balls were tested simultaneously in a 40 cm diameter ball mill. Hematite, phosphate rock and quartz sand were wet ground. The tests were conducted for 200 h.

Quartz sand caused the highest wear rates, ranging from 6.5 to 8.6 μm/h for the martensitic balls, while the wear rates observed for the phosphate rock ranged from 1.4 to 2.9 μm/h.

Increasing the carbide volume fraction resulted in decreased wear rates for the softer abrasives. The almost complete protection of the matrix by carbides in eutectic microstructures caused the eutectic alloy to present the best performance against hematite or phosphate rock. The opposite effect was observed for the quartz sand. The quartz abrasive rapidly wears out the matrix, continuously exposing and breaking carbide branches. A martensitic steel presented the best performance against the quartz abrasive.

With phosphate rock, the wear rate of 30% carbide cast irons increased from 1.46 to 2.84 and to 6.39 μm/h as the matrix changed, respectively, from martensitic to austenitic and to pearlitic. Wear profiles of worn balls showed that non-martensitic balls presented deep subsurface carbide cracking, due to matrix deformation. Similar behavior was observed in the tests with the other abrasives.

In pin-on-disc tests, austenitic samples performed better than the martensitic ones. This result shows that pin tests in the presence of retained austenite can be misleading.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号