首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prostaglandin (PG) release is characteristic of most inflammatory diseases. The committed step in the formation of free arachidonic acid into PG products is catalyzed by cyclooxygenase (COX, prostaglandin H2 synthase, PGHS), which exists as two genetically distinct isoforms. COX-1 is constitutively expressed and produces PGs and thromboxane A2 during normal physiologic activities, while COX-2 is an inducible enzyme stimulated by growth factors, lipopolysaccharide, and cytokines during inflammation or cell injury. Proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) released into the amniotic fluid in the setting of infection have been proposed to signal amnion and decidual cells to produce PGs that may culminate in preterm labor. However, since the molecular control of this phenomenon has not been established, this study used amnion-derived WISH cells to determine if TNF-alpha promoted the formation of PGs through COX-2 activity. Treatment of WISH cells with TNF-alpha (0.1 ng/mL-100 ng/mL) caused a dose-dependent increase in COX-2 expression and the subsequent biosynthesis of PGE2 that persisted for at least 48 hrs. In contrast, COX-1 mRNA and protein levels were unaltered by TNF-alpha treatment as determined by RT-PCR and immunoblot analysis, respectively. TNF-alpha-stimulated COX-2 expression and the subsequent formation of PGE2 were inhibited by dexamethasone (0.1 microM). In addition, indomethacin (1 microM) and the novel COX-2-selective inhibitor, NS-398 (IC50 approximately 1.1 x 10(-9) M), attenuated TNF-alpha-elicited PGE2 production. Results presented here demonstrate that TNF-alpha elicits prolonged and regulatable induction of COX-2 in WISH cells, while COX-1 is constitutively expressed and unchanged in response to TNF-alpha stimulation.  相似文献   

2.
3.
OBJECTIVE: To determine the effects of interleukin 1alpha (IL-1alpha), tumor necrosis factor-alpha (TNF-alpha), dexamethasone, and 17beta-estradiol on the expression of cyclooxygenase-1 (COX-1) and COX-2 in bovine chondrocytes. METHODS: Northern blot analysis was used to quantify COX-1 and COX-2 mRNA expression in primary cultures of bovine chondrocytes and prostaglandin production to evaluate COX activity. RESULTS: IL-1alpha and TNF-alpha increased the expression of COX-2. This effect was independent of de novo protein synthesis and dependent on increased mRNA stability in the case of IL-1alpha. Dexamethasone inhibited the effects of both cytokines. 17beta-estradiol inhibited COX-2 mRNA expression in basal conditions, but had no effect on COX-2 expression induced by cytokines. The specific COX-2 inhibitor compound NS 398 prevented the increase in prostaglandin E2 (PGE2) production induced by the cytokines. COX-1 levels remained stable with all treatments. CONCLUSION: Increase in mRNA stability is a mechanism implicated in the induction of COX-2 by some cytokines. The effects of IL-1alpha and TNF-alpha on PGE2 production are mainly due to an increase in COX-2 activity as shown by the effect of compound NS 398. 17beta-estradiol inhibits COX-2 mRNA expression in basal conditions, suggesting that estrogens could be implicated in the control of cartilage metabolism.  相似文献   

4.
5.
6.
7.
8.
9.
10.
The purpose of this study was to investigate the relationships between macrophage production of TNF-alpha and female hormones. Northern blot hybridization experiments showed that the female sex steroid hormone, progesterone, decreases steady state levels of TNF-alpha mRNA in LPS-activated mouse macrophages (RAW 264.7 and ANA-1 cells) in vitro. The production of intracellular and secreted TNF-alpha protein, as determined by ELISA, was decreased in both progesterone- and dexamethasone-treated, LPS-stimulated macrophages. Estrogen had no effect on expression of the TNF-alpha gene in mouse macrophages and did not alter progesterone-mediated suppression. Additional experiments conducted to investigate the mechanism of action of progesterone showed that this hormone, like dexamethasone, elevates steady state mRNA levels of IkappaB alpha and increases the levels of IkappaB alpha protein that are translocated from the cytoplasm to the nucleus. Thus, progesterone is a potent inhibitor of steady state levels TNF-alpha mRNA and TNF-alpha protein production in activated macrophages and may achieve this result through effects on an inhibitor of NF-kappaB.  相似文献   

11.
12.
13.
14.
15.
Cyclooxygenase-2 (COX-2) is now considered to be the major constitutively expressed COX isozyme in the central nervous system. The present immunocytochemical study details localization of COX-2 immunoreactivity in rat spinal cord along with the expression of prostaglandin E2 receptor subtype EP3. Prominent COX-2 staining was observed in the nuclear envelope of neurons throughout the spinal cord, especially in the superficial dorsal horn laminae and motoneurons of lamina IX, as well as in glial cells of the white matter. Expression of EP3 receptor was strictly confined to afferent terminal areas in the superficial dorsal horns.  相似文献   

16.
We investigated the regulation of COX-2 expression and activity by adenosine receptors in rat microglial cells. The selective adenosine A2a-receptor agonist CGS21680 and the non-selective adenosine A1- and A2-receptor agonist 5'-N-ethylcarboxiamidoadenosine (NECA) induced an increase in COX-2 mRNA levels and the synthesis of prostaglandin E2 (PGE2). The adenosine A1-receptor agonist cyclopentyladenosine (CPA) was less potent, and the adenosine A1-receptor-specific agonist N6-2-(-aminophenylo)ethyladenosine (APNEA) showed only marginal effects. Microglia expressed adenosine A1-, A2a-, and A3-, but not A2b-receptor mRNAs, whereas astroglial cells expressed adenosine A2b- but not A2a-receptor mRNA. The adenosine A2a-receptor selective antagonist (E)-8-(3,4-dimethoxystyryl)-1,3-dipropyl-7-methylxanthine (KF17837) inhibited both CGS21680-induced COX-2 expression and PGE2 release. CGS21680-increased PGE2 levels were inhibited by dexamethasone, by the nonsteroidal antiinflammatory drug meloxicam, and by the adenylyl cyclase inhibitor 9-(tetrahydro-2-furanyl)-9H-purine-6-amine (SQ22536). CGS21680 and NECA both increased intracellular cAMP levels in microglial cells. Dibutyryl cAMP as well as forskolin induced the release of PGE2. The results strongly suggest that adenosine A2a-receptor-induced intracellular signaling events cause an up-regulation of the COX-2 gene and the release of PGE2. Apparently, the cAMP second messenger system plays a crucial role in COX-2 gene regulation in rat microglial cells. The results are discussed with respect to neurodegenerative disorders of the CNS such as Alzheimer's disease, in which activated microglia are critically involved and COX inhibitors may be of therapeutic benefit.  相似文献   

17.
18.
19.
The synthesis of prostanoids is regulated by cyclooxygenases (prostaglandin H synthases), which catalyze the conversion of arachidonic acid to PGH2. Cyclooxygenases are the target of aspirin and other nonsteroidal anti-inflammatory agents. In this study, we found that human polymorphonuclear leukocytes (PMNs) express the inducible isoform of cyclooxygenase, COX-2, when stimulated by LPS whereas the protein was not detectable in freshly isolated human PMNs. We also found by immunohistochemical analysis that COX-2 is expressed in PMNs in inflamed human tissues. COX-2 was induced in a time- and concentration-dependent fashion when isolated human PMNs were exposed to LPS; COX-2 was also induced, or its expression was increased, by TNF-alpha, IL-1, and IL-8. Expression of COX-2 in stimulated PMNs was paralleled by secretion of PGE2. The release of PGE2 was blocked by a selective nonsteroidal inhibitor of COX-2, indicating that the enzyme is responsible for the prostanoids produced, and was inhibited by dexamethasone. The time course of LPS-induced COX-2 expression and other features were different in freshly isolated PMNs, monocytes, and macrophages, indicating that COX-2 expression is differentially regulated in myeloid cells of different lineages and degrees of maturation. Consistent with this, IL-4 and IL-10, which suppressed LPS-induced COX-2 expression in monocytes, had little effect on this response by PMNs. These experiments demonstrate that PMNs express COX-2 when appropriately stimulated. Thus, they may actively influence the eicosanoid composition of the acute inflammatory milieu.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号