首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thrombomodulin is a cofactor protein on vascular endothelial cells that inhibits the procoagulant functions of thrombin and enhances thrombin-catalyzed activation of anticoagulant protein C. Thrombomodulin also accelerates the proteolytic activation of a plasma procarboxypeptidase referred to as thrombin-activable fibrinolysis inhibitor (TAFI). In this study, we describe structures on recombinant membrane-bound thrombomodulin that are required for human TAFI activation. Deletion of the N-terminal lectin-like domain and epidermal growth factor (EGF)-like domains 1 and 2 had no effect on TAFI or protein C activation, whereas deletions including EGF-like domain 3 selectively abolished thrombomodulin cofactor activity for TAFI activation. Provided that thrombomodulin EGF-like domain 3 was present, TAFI competitively inhibited protein C activation catalyzed by the thrombin-thrombomodulin complex. A thrombomodulin construct lacking EGF-like domain 3 functioned normally as a cofactor for protein C activation but was insensitive to inhibition by TAFI. Thus, the anticoagulant and antifibrinolytic cofactor activities of thrombomodulin have distinct structural requirements: protein C binding to the thrombin-thrombomodulin complex requires EGF-like domain 4, whereas TAFI binding also requires EGF-like domain 3.  相似文献   

2.
Erythrocyte protein 4.1 (P4.1) is an 80-kD cytoskeletal protein that is important for the maintenance of the structural integrity and flexibility of the red blood cell membrane. Limited chymotryptic digestion of erythroid P4.1 yields 4 structural domains corresponding to the 30-, 16-, 10-, and 22/24-kD domains. Using a yeast two-hybrid system, we isolated cDNA clones encoding pICln that specifically interacts with the 30-kD domain of P4.1. In this report, we show that the carboxyl-terminus (amino acid residues 103-237) of pICln binds to the 30-kD domain of P4.1 in a yeast two-hybrid system. The direct association between the 30-kD domain of P4.1 and pICln was further confirmed by the following findings: (1) the S35-methione-labeled pICln specifically bound to both GST/P4.1-80 (80 kD) and GST/P4.1-30 (30 kD) fusion proteins, but not to the proteins that lack the 30-kD domain; (2) coimmunoprecipitation analysis of the cell extracts from transfected SiHa cells showed that pICln and P4.1 associate in transfected cells. It was reported that pICln can form a complex with actin and may play a role involved in cellular volume regulation. The direct association between P4.1 and pICln suggests that pICln may link P4.1-bound cytoskeletal elements to an unidentified volume-sensitive chloride channel.  相似文献   

3.
Tpr is a 270-kD coiled-coil protein localized to intranuclear filaments of the nuclear pore complex (NPC). The mechanism by which Tpr contributes to the structure and function of the nuclear pore is currently unknown. To gain insight into Tpr function, we expressed the full-length protein and several subdomains in mammalian cell lines and examined their effects on nuclear pore function. Through this analysis, we identified an NH2-terminal domain that was sufficient for association with the nucleoplasmic aspect of the NPC. In addition, we unexpectedly found that the acidic COOH terminus was efficiently transported into the nuclear interior, an event that was apparently mediated by a putative nuclear localization sequence. Ectopic expression of the full-length Tpr caused a dramatic accumulation of poly(A)+ RNA within the nucleus. Similar results were observed with domains that localized to the NPC and the nuclear interior. In contrast, expression of these proteins did not appear to affect nuclear import. These data are consistent with a model in which Tpr is tethered to intranuclear filaments of the NPC by its coiled coil domain leaving the acidic COOH terminus free to interact with soluble transport factors and mediate export of macromolecules from the nucleus.  相似文献   

4.
A 130-kD protein that coimmunoprecipitates with the tight junction protein ZO-1 was bulk purified from Madin-Darby canine kidney (MDCK) cells and subjected to partial endopeptidase digestion and amino acid sequencing. A resulting 19-amino acid sequence provided the basis for screening canine cDNA libraries. Five overlapping clones contained a single open reading frame of 2,694 bp coding for a protein of 898 amino acids with a predicted molecular mass of 98,414 daltons. Sequence analysis showed that this protein contains three PSD-95/SAP90, discs-large, ZO-1 (PDZ) domains, a src homology (SH3) domain, and a region similar to guanylate kinase, making it homologous to ZO-1, ZO-2, the discs large tumor suppressor gene product of Drosophila, and other members of the MAGUK family of proteins. Like ZO-1 and ZO-2, the novel protein contains a COOH-terminal acidic domain and a basic region between the first and second PDZ domains. Unlike ZO-1 and ZO-2, this protein displays a proline-rich region between PDZ2 and PDZ3 and apparently contains no alternatively spliced domain. MDCK cells stably transfected with an epitope-tagged construct expressed the exogenous polypeptide at an apparent molecular mass of approximately 130 kD. Moreover, this protein colocalized with ZO-1 at tight junctions by immunofluorescence and immunoelectron microscopy. In vitro affinity analyses demonstrated that recombinant 130-kD protein directly interacts with ZO-1 and the cytoplasmic domain of occludin, but not with ZO-2. We propose that this protein be named ZO-3.  相似文献   

5.
6.
7.
The macrophage colony-stimulating factor receptor and several other hematopoietic growth factor receptors induce the tyrosine phosphorylation of a 145- to 150-kD protein in murine cells. We have previously cloned a cDNA for the murine 150-kD protein, SHIP, and found that it encodes a unique signaling intermediate that binds the SHC PTB domain through at least one tyrosine phosphorylated (NPXY) site in the carboxyl-terminal region. SHIP also contains several potential SH3 domain-binding sites, an SH2 domain for binding other tyrosine phosphorylated proteins, and an enzymatic activity that removes the phosphate from the 5 position of phosphatidylinositol 3,4,5-phosphate or from inositol 1,3,4,5-phosphate. SHIP has a negative effect on cell growth and therefore loss or modification may have profound effects on hematopoietic cell development. In this study, we have cloned a cDNA for human SHIP and examined mRNA and protein expression of SHIP and related species in bone marrow and blood cells. Flow cytometry indicates that at least 74% of immature CD34+ cells express SHIP cross-reacting protein species, whereas within the more mature population of CD33+ cells, only 10% of cells have similar expression. The majority of T cells react positively with the anti-SHIP antibodies, but significantly fewer B cells are positive. Immunoblotting detects up to seven different cross-reacting SHIP species, with peripheral blood mononuclear cells exhibiting primarily a 100-kD protein and a CD34+ acute myeloblastic leukemia expressing mainly 130-kD and 145-kD forms of SHIP. Overall, these results indicate that there is an enormous diversity in the size of SHIP or SHIP-related mRNA and protein species. Furthermore, the expression of these protein species changes according to both the developmental stage and differentiated lineage of the mature blood cell.  相似文献   

8.
An Escherichia coli expression system that exploits the bacterial alkaline phosphatase (PhoA) signal sequence to translocate recombinant human epidermal growth factor (hEGF) to the periplasm was used to evaluate how changes in the composition and sequence of amino acids near the PhoA-hEGF junction influence the periplasmic accumulation of recombinant protein. A series of chimeric structural genes was generated by in vitro replacement of hEGF sequence with analogous segments from the EGF-like domain of human heregulin (HRG), significantly altering the electrostatic character of the amino-terminal region of the mature protein. Quantitation of HRG/EGF protein in E. coli periplasmic extracts, by RP-HPLC, showed a fourfold decrease after one of two acidic residues located in the amino-terminal region of the mature hEGF, near the PhoA junction, was replaced. An additional threefold decrease was observed when the second acidic residue was replaced with a positively charged lysine. Further extension of the amino-terminal HRG sequence, beyond the first six residues, resulted in net neutralization of a more distant EGF acidic residue with no additional effect on protein yield. The importance of having a negatively charged group in the amino-terminal region of the mature protein was confirmed when insertion of an aspartic acid near the amino-terminus of two poorly expressed hybrid protein sequences resulted in a five- to eightfold increase in their recovery from the periplasm. This study demonstrates the importance of having negatively charged residues near the fusion junction of recombinant proteins expressed in E. coli using the PhoA signal sequence for protein export.  相似文献   

9.
Neurofibromatosis type 2, a disease characterized by the formation of multiple nervous system tumors, especially schwannomas, is caused by mutation in the gene-encoding merlin/schwannomin. The molecular mechanism by which merlin functions as a tumor suppressor is unknown, but is hypothesized to involve plasma membrane and cytoskeleton interaction. Several merlin antibodies were used to study merlin expression, localization, and protein association in primary cultures of rat sensory neurons, Schwann cells (SCs), and SCs grown with neurons (SC/N cultures) before and during differentiation into myelinating cells. Western blot analysis revealed that neurons predominantly expressed a 68-kD protein, but SCs expressed two additional 88- and 120-kD related proteins. Extensive immunological characterization demonstrated that the 88-kD protein shared three domains with the 68-kD merlin protein. Western blot analysis of soluble and insoluble culture fractions demonstrated that the majority of merlin and related proteins were soluble in isolated SCs and undifferentiated SC/N cultures, but became insoluble in myelinating SC/N cultures. Double immunofluorescence staining suggested that merlin translocated from the perinuclear cytoplasm in undifferentiated SCs to the subplasmalemma in differentiating SCs and partially colocalized with beta1 integrin. Finally, beta1 integrin antibody coimmunoprecipitated 68-kD merlin from isolated SC and undifferentiated SC/N cultures, but predominantly the 88-kD protein from differentiating SC/N cultures. Together, these results provide evidence that merlin interacts with beta1 integrin and that merlin localization changes from a cytosolic to cytoskeletal compartment during SC differentiation.  相似文献   

10.
Versican is a highly expressed proteoglycan in zones of developing tissues. To investigate whether versican plays a role in cell differentiation, we studied its role in mesenchymal condensation and chondrogenesis. Here we report that a mini-versican gene product inhibits mesenchymal chondrogenesis but not condensation. The mini-versican-treated mesenchymal cultures form fewer, smaller cartilaginous nodules and produced lower levels of link protein and type II collagen. The versican G3 domain alone, but not G1, was sufficient to inhibit mesenchymal chondrogenesis. Deletion of two epidermal growth factor (EGF)-like motifs in the G3 domain abolished the effect of versican. The G3 domain of aggrecan, which does not contain an EGF-like motif, did not inhibit mesenchymal chondrogenesis. We also generated a chimera construct containing the two EGF-like motifs of versican and the G3 domain of aggrecan, and we observed that this chimera construct inhibited chondrogenesis to a lesser extent than did the full-length versican G3 construct. Direct transfection of mesenchymal cells with different constructs produced similar results. Furthermore, treatment with versican antisense oligonucleotides and transfection with a versican antisense construct promoted chondrogenesis. Taken together, our results strongly suggest that versican inhibits mesenchymal chondrogenesis via its EGF-like motifs.  相似文献   

11.
12.
13.
In the adult human brain, normal astrocytes constitute nearly 40% of the total central nervous system (CNS) cell population and may assume a star-shaped configuration resembling epithelial cells insofar as the astrocytes remain intimately associated, through their cytoplasmic extensions, with the basement membrane of the capillary endothelial cells and the basal lamina of the glial limitans externa. Although their exact function remains unknown, in the past, astrocytes were thought to subserve an important supportive role for neurons, providing a favorable ionic environment, modulating extracellular levels of neurotransmitters, and serving as spacers that organize neurons. In immunohistochemical preparations, normal, reactive, and neoplastic astrocytes may be positively identified and distinguished from other CNS cell types by the expression of the astrocyte-specific intermediate filament glial fibrillary acidic protein (GFAP). Glial fibrillary acidic protein is a 50-kD intracytoplasmic filamentous protein that constitutes a portion of, and is specific for, the cytoskeleton of the astrocyte. This protein has proved to be the most specific marker for cells of astrocytic origin under normal and pathological conditions. Interestingly, with increasing astrocytic malignancy, there is progressive loss of GFAP production. As the human gene for GFAP has now been cloned and sequenced, this review begins with a summary of the molecular biology of GFAP including the proven utility of the GFAP promoter in targeting genes of interest to the CNS in transgenic animals. Based on the data provided the authors argue cogently for an expanded role of GFAP in complex cellular events such as cytoskeletal reorganization, maintenance of myelination, cell adhesion, and signaling pathways. As such, GFAP may not represent a mere mechanical integrator of cellular space, as has been previously thought. Rather, GFAP may provide docking sites for important kinases that recognize key cellular substrates that enable GFAP to form a dynamic continuum with microfilaments, integrin receptors, and the extracellular matrix.  相似文献   

14.
Apoplastic alpha-glucosidases occur widely in plants but their function is unknown because appropriate substrates in the apoplast have not been identified. Arabidopsis contains at least three alpha-glucosidase genes; Aglu-1 and Aglu-3 are sequenced and Aglu-2 is known from six expressed sequence tags. Antibodies raised to a portion of Aglu-1 expressed in Escherichia coli recognize two proteins of 96 and 81 kD, respectively, in vegetative tissues of Arabidopsis, broccoli (Brassica oleracea L.), and mustard (Brassica napus L.). The acidic alpha-glucosidase activity from broccoli flower buds was purified using concanavalin A and ion-exchange chromatography. Two active fractions were resolved and both contained a 96-kD immunoreactive polypeptide. The N-terminal sequence from the 96-kD broccoli alpha-glucosidase indicated that it corresponds to the Arabidopsis Aglu-2 gene and that approximately 15 kD of the predicted N terminus was cleaved. The 81-kD protein was more abundant than the 96-kD protein, but it was not active with 4-methylumbelliferyl-alpha-D-glucopyranoside as the substrate and it did not bind to concanavalin A. In situ activity staining using 5-bromo-4-chloro-3-indolyl-alpha-D-glucopyranoside revealed that the acidic alpha-glucosidase activity is predominantly located in the outer cortex of broccoli stems and in vascular tissue, especially in leaf traces.  相似文献   

15.
Schwannoma-derived growth factor (SDGF), an epidermal growth factor (EGF) family peptide recently discovered, has an EGF-like domain in the carboxyl terminal portion. In this study, we synthesized mSDGF(38-80) corresponding to the EGF-like domain of mouse SDGF by means of stepwise solid-phase method using Fmoc chemistry in order to evaluate the biological function of the EGF-like domain in SDGF. The linear peptide of mSDGF(38-80) was folded by direct oxidation with reduced and oxidized glutathione to form intramolecular disulfide bridges in synthetic peptide. On the biological activity, we examined mitogenic activity induced by mSDGF(38-80) in NIH/3T3 fibroblast cells and interaction with EGF receptor in A431 cells. In the results, mSDGF(38-80) was confirmed to form three disulfide linkages that were similar in pattern to EGF by amino acid and sequence analysis of fragments obtained after thermolytic digestion. However, mSDGF(38-80) possessed weak mitogenic activity in NIH/3T3 cells and weak binding affinity for the EGF receptor in A431 cells compared with those of human EGF. These results suggest that the EGF-like domain of SDGF may have little effect upon mitogenic activity and the EGF receptor binding of SDGF.  相似文献   

16.
The L1 CAM family of cell adhesion molecules and the ankyrin family of spectrin-binding proteins are candidates to collaborate in transcellular complexes used in diverse contexts in nervous systems of vertebrates and invertebrates. This report presents evidence for functional coupling between L1 and 440-kD ankyrinB in premyelinated axons in the mouse nervous system. L1 and 440-kD ankyrinB are colocalized in premyelinated axon tracts in the developing nervous system and are both down-regulated after myelination. AnkyrinB (-/-) mice exhibit a phenotype similar to, but more severe, than L1 (-/-) mice and share features of human patients with L1 mutations. AnkyrinB (-/-) mice exhibit hypoplasia of the corpus callosum and pyramidal tracts, dilated ventricles, and extensive degeneration of the optic nerve, and they die by postnatal day 21. AnkyrinB (-/-) mice have reduced L1 in premyelinated axons of long fiber tracts, including the corpus callosum, fimbria, and internal capsule in the brain, and pyramidal tracts and lateral columns of the spinal cord. L1 was evident in the optic nerve at postnatal day 1 but disappeared by postnatal day 7 in mutant mice while NCAM was unchanged. Optic nerve axons of ankyrinB (-/-) mice become dilated with diameters up to eightfold greater than normal, and they degenerated by day 20. These findings provide the first evidence for a role of ankyrinB in the nervous system and support an interaction between 440-kD ankyrinB and L1 that is essential for maintenance of premyelinated axons in vivo.  相似文献   

17.
The complex nervous networks found throughout the mammalian gut--the enteric nervous system--are histologically, ultrastructurally, and, to some extent, functionally--similar to the central nervous system. The glial cells of the small enteric ganglia are generally classified as Schwann or satellite cells, since they are found in the peripheral nervous system, possess nuclei which ultrastructurally resemble those of Schwann cells and are derived from the neural crest. However, it has been argued that these cells resemble astrocytes of the central nervous system with respect to gross and fine structure, and their relationship with the enteric neurones and their processes. In immunohistochemical studies of these cells, both in frozen sections of gut wall and in tissue culture preparations of the enteric plexuses, we found evidence that the enteric glial cells are rich in glial fibrillary acidic protein (GFAP), a protein associated with the 100 A glial intermediate filaments, and hitherto believed to be specific to astrocytes of the central nervous system only.  相似文献   

18.
19.
The ectodomains of many proteins located at the cell surface are shed upon cell stimulation. One such protein is the heparin-binding EGF-like growth factor (HB-EGF) that exists in a membrane-anchored form which is converted to a soluble form upon cell stimulation with TPA, an activator of protein kinase C (PKC). We show that PKCdelta binds in vivo and in vitro to the cytoplasmic domain of MDC9/meltrin-gamma/ADAM9, a member of the metalloprotease-disintegrin family. Furthermore, the presence of constitutively active PKCdelta or MDC9 results in the shedding of the ectodomain of proHB-EGF, whereas MDC9 mutants lacking the metalloprotease domain, as well as kinase-negative PKCdelta, suppress the TPA-induced shedding of the ectodomain. These results suggest that MDC9 and PKCdelta are involved in the stimulus-coupled shedding of the proHB-EGF ectodomain.  相似文献   

20.
Attractin is a normal human serum glycoprotein of 175 kDa that is rapidly expressed on activated T cells and released extracellularly after 48-72 hr. We have cloned attractin and find that, as in its natural serum form, it mediates the spreading of monocytes that become the focus for the clustering of nonproliferating T lymphocytes. There are two mRNA species with hematopoietic tissue-specific expression that code for a 134-kDa protein with a putative serine protease catalytic serine, four EGF-like motifs, a CUB domain, a C type lectin domain, and a domain homologous with the ligand-binding region of the common gamma cytokine chain. Except for the latter two domains, the overall structure shares high homology with the Caenorhabditis elegans F33C8.1 protein, suggesting that attractin has evolved new domains and functions in parallel with the development of cell-mediated immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号