首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ferrochelatase catalyzes the chelation of ferrous iron and protoporphyrin to form heme. It is expressed as a housekeeping gene in all cells, but is upregulated during erythropoiesis. Ferrochelatase activity is deficient in the inherited disease protoporphyria as a result of heterogeneous mutations. Although human ferrochelatase is transcribed from a single promoter in both nonerythroid and erythroid cells, previous studies using transient transfection assays failed to demonstrate erythroid-specific increased expression from 4.0 kb of the human ferrochelatase promoter containing the erythroid cis-elements, GATA and NF-E2. The present study analyzes the in vivo regulation of the ferrochelatase gene to provide insights into the mechanism of its erythroid-specific enhancement. Transgenic (TG) mouse lines were generated in which the luciferase reporter gene was driven by either a 150-bp ferrochelatase minimal promoter (-0.15 TG) or by a 4.0 kb extended 5' upstream region (-4.0 TG). Expression of the -4.0 TG transgene was generally consistent with the endogenous gene during embryonic development and in nonerythroid and erythroid tissues as demonstrated by Northern blotting and mRNA in situ hybridization. The -4.0 TG was expressed at a higher level than the -0.15 TG in nonerythroid and erythroid tissues, including during extramedullary erythropoiesis induced by n-acetylphenylhydrazine injection. The enhanced erythroid expression of the -4.0 TG correlates with the appearance of a DNase I hypersensitive site in the 5' flanking region of the transgene. Therefore, in the context of chromosomal integration, the 5' flanking region of the ferrochelatase gene is necessary and sufficient to confer high levels of transgene expression in erythroid tissue.  相似文献   

3.
Corticobasal degeneration (CBD) is a slowly progressive disorder characterized by an asymmetrical akinetic-rigid syndrome, supranuclear ophthalmoplegia, dystonia, often accompanied by involuntary movements, particularly myoclonus, and associated with lateralized cortical signs such as alien limb behavior and apraxia. Computerized tomography demonstrates asymmetrical frontoparietal cortical atrophy in the later stages of the illness. Neuropathological examination reveals neuronal loss, gliosis and swollen achromatic neurons within the frontal and temporal cortices, and the substantia nigra. We discuss here a unique phenomenon not described so far in three patients with clinical features of CBD, one with subsequent autopsy observations. When awake, they all showed a common behavior, their mouth opened constantly and immediately, when a tongue-depresser was approached in front of it by the examiner. In two of them, their mouth also opened when its corner was stroked by a tongue-depressor. They could not control these phenomena at all, even they were asked not to open their mouth. We would like to call these phenomena "forced mouth opening reactions" because they were uncontrollable voluntarily. They may be divided into two groups, i.e. visual and tactile "forced mouth opening reactions". In all the patients the neurological, neuro-imaging and neuropathological data showed that the frontal lobes were damaged. Additionally, they had some frontal lobe release signs such as forced grasping, forced groping, or alien limb sign. We would like to apply the mechanism for these release signs to the "forced mouth opening reactions". Thus, we speculate that the frontal lobe contains a higher motor control mechanism for normal mouth opening movement, and the "forced mouth opening reactions" result from impairment of this control.  相似文献   

4.
During development, changes occur in both the sites of erythropoiesis and the globin genes expressed at each developmental stage. Previous work has shown that high-level expression of human beta-like globin genes in transgenic mice requires the presence of the locus control region (LCR). Models of hemoglobin switching propose that the LCR and/or stage-specific elements interact with globin gene sequences to activate specific genes in erythroid cells. To test these models, we generated transgenic mice which contain the human Agamma-globin gene linked to a 576-bp fragment containing the human beta-spectrin promoter. In these mice, the beta-spectrin Agamma-globin (betasp/Agamma) transgene was expressed at high levels in erythroid cells throughout development. Transgenic mice containing a 40-kb cosmid construct with the micro-LCR, betasp/Agamma-, psibeta-, delta-, and beta-globin genes showed no developmental switching and expressed both human gamma- and beta-globin mRNAs in erythroid cells throughout development. Mice containing control cosmids with the Agamma-globin gene promoter showed developmental switching and expressed Agamma-globin mRNA in yolk sac and fetal liver erythroid cells and beta-globin mRNA in fetal liver and adult erythroid cells. Our results suggest that replacement of the gamma-globin promoter with the beta-spectrin promoter allows the expression of the beta-globin gene. We conclude that the gamma-globin promoter is necessary and sufficient to suppress the expression of the beta-globin gene in yolk sac erythroid cells.  相似文献   

5.
The GABA(A) receptor is a ligand gated chloride channel consisting of five membrane spanning proteins for which 13 different genes have been identified in the mammalian brain. The present review summarizes recent work from our laboratory on the characterization of the immunocytochemical distribution of these GABA(A) receptor subunits in the rat brain and changes in immunoreactivity and mRNA expression after kainic acid-induced status epilepticus. A heterogeneous distribution of immunoreactive GABA(A) receptor subunits was observed. The most abundant ones were: alpha1, alpha2, alpha4, alpha5, beta2, beta3, gamma2, and delta. Alpha1, beta2, and gamma2 were about equally distributed in all subfields of the hippocampus; alpha4- and delta-subunits were preferentially found in the dentate molecular layer and in CA1; alpha2 was localized to the dentate molecular layer and CA3; alpha5 was found in the dendritic areas of CA1 to CA3; and beta1 was preferentially seen in CA2. Alpha1, beta2, gamma2 and delta were highly concentrated in interneurons. Kainic acid-induced seizures caused acute and chronic changes in the expression of mRNAs and immunoreactive proteins. Acute changes included decreases in alpha2, alpha5, beta1, beta3, gamma2 and delta mRNA levels (by about 25-50%), accompanied by increases (by about 50%) in alpha1, alpha4, and beta2 messages in granule cells (after 6-12 h). Chronic changes, characterized by losses in mRNA and immunoreactive proteins in CA1 and CA3, are undoubtedly due to seizure-related cell damage. However, compensatory expression of alpha2 and beta3 subunits, especially in CA3b/c, was observed. Furthermore, increases in mRNAs and immunoreactive proteins were seen for alpha1, alpha2 alpha4, beta1, beta2, beta3 and gamma2 in granule cells and in the molecular layer of the dentate gyrus at 7-30 days after kainic acid injection. The changes in the expression of GABA(A) receptor subunits, observed in practically all hippocampal subfields, may reflect altered GABA-ergic transmission during development of the epileptic syndrome. Increased expression of GABA(A) receptor subunits in the dendritic field of granule cells and CA3 suggest that GABA-ergic inhibition may be augmented at these levels. However, the lasting preservation of alpha1-, beta2-, and gamma2-subunits in interneurons could provide a basis for augmented inhibition of GABA-ergic interneurons, leading to net disinhibition.  相似文献   

6.
Bone sialoprotein (BSP) is a major protein of the mineralized bone extracellular matrix that has been implicated in the nucleation of hydroxyapatite crystals. Our previous studies have demonstrated that BSP mRNA is expressed by differentiated osteoblasts, odontoblasts, and cementoblasts involved in de novo mineralized tissue formation in a tissue-specific and developmentally regulated manner. To determine the basis of the selective expression of the BSP gene, we have generated four transgenic mouse lines in which 2.7 kb of the rat BSP promoter ligated to a luciferase reporter gene has been stably integrated into the mouse genome. Assays of luciferase activities in 5-day-old animals has revealed consistently high levels in bone tissues with negligible activities in various other organs including kidney, liver, stomach, intestine, and spleen. In some animals, variable expression was observed in brain and skin. Temporal analyses revealed the highest luciferase expression in neonatal bones, with expression decreasing markedly with subsequent growth and development, as observed previously for the endogenous gene in rats. Immunohistochemical analysis of luciferase activity and in situ hybridization of luciferase mRNA in bone tissues show that differentiated osteoblasts express the highest levels of luciferase, consistent with the induction of endogenous gene expression. These studies demonstrate that the regulation of the BSP gene during osteoblastic differentiation, together with its tissue-specific, developmentally regulated expression, is primarily mediated within the 2.7 kb region of the promoter.  相似文献   

7.
8.
We examined the effect of PTH on the activity of alpha 1(I) collagen promoter fusion genes in cultured calvariae from transgenic mice. The parent construct, ColCAT 3.6, contains 3520 basepairs of 5' rat alpha 1(I) collagen DNA, 115 basepairs of untranslated alpha 1(I) collagen-coding DNA, and the bacterial chloramphenicol acetyltransferase reporter gene, while the 5'-deletion ColCAT 2.3 contains 2296 kilobases of rat alpha 1(I) collagen promoter sequence. Transgenic mouse lines harboring these collagen promoter fusion genes were developed using the oocyte microinjection technique, and for each construct, three different lines of mice were tested. Calvariae from 6- to 8-day-old transgenic mice were cultured for 48 h with or without bovine PTH-(1-34). ColCAT 3.6 and ColCAT 2.3 were expressed at comparable levels in calvariae and were inhibited by PTH. There were parallel decreases in the incorporation of [3H]proline into collagen and levels of the endogenous alpha 1(I) collagen mRNA and transgene mRNA. Forskolin at 10 microM mimicked the inhibitory effect of PTH on promoter activity in ColCAT 3.6 and ColCAT 2.3 calvariae. A RNase protection assay showed that the transgene was initiated correctly from the transgene promoter. These data show that PTH and cAMP can repress collagen promoter activity in calvariae from transgenic mice, suggesting that the alpha 1(I) collagen promoter may contain cis elements down-stream of -2.3 kilobases that mediate PTH and cAMP repression of collagen gene expression in bone. Cultured bone explants from transgenic mice can be used as a model to study hormonal regulation of alpha 1(I) collagen promoter constructs.  相似文献   

9.
10.
11.
A line of mice has been developed which are transgenic for an 8.2-kilobase (kb) genomic clone of the rat vasopressin (VP) gene. Using a polymerase chain reaction technique, the rat VP (rVP) transgene was shown to have tissue-specific mRNA expression in the hypothalamus, temporal lobe, parietal cerebral cortex, cerebellum, and posterior pituitary, similar to the tissue distribution of endogenous mouse and rat VP expression. Expression of transgenic rVP mRNA was also found in the lung and pancreas of the transgenic mice, sites of known ectopic expression of VP. Using two methods, Northern blot analysis with species-specific cRNA probes and a quantitative polymerase chain reaction technique, the quantity of rVP transgene mRNA was shown to regulate appropriately in response to an osmotic stimulus. After 72 h of water deprivation, the quantity of transgenic rVP mRNA increased 6.8 +/- 3.0-fold. This was not significantly different than the fold increase in mouse VP mRNA quantity seen in nontransgenic mice (4.8 +/- 1.5) but was significantly different (P < 0.05) than the 1.2 +/- 0.03-fold increase in rat VP mRNA seen in normal rats after water deprivation. In the rat hypothalamus, VP mRNA poly(A) tail length increases with osmotic stimulation, while in the mouse it does not. The poly(A) tail of transgenic rVP mRNA expressed in mouse hypothalamus did not increase in length after osmotic stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The renin-angiotensin system is a major determinant of arterial pressure and volume homeostasis in mammals through the actions of angiotensin II, the proteolytic digestion product of angiotensinogen. Molecular genetic studies in several human populations have revealed genetic linkage between the angiotensinogen gene and both hypertension and increased plasma angiotensinogen. Transgenic mice were generated with a human angiotensinogen genomic clone to develop an animal model to examine tissue- and cell-specific expression of the gene and to determine if overexpression of angiotensinogen results in hypertension. Human angiotensinogen mRNA was expressed in transgenic mouse liver, kidney, heart, adrenal gland, ovary, brain, and white and brown adipose tissue and, in kidney, was exclusively localized to epithelial cells of the proximal convoluted tubules. Plasma levels of human angiotensinogen were approximately 150-fold higher in transgenic mice than that found normally in human plasma. The blood pressure of mice bearing the human angiotensinogen gene was normal but infusion of a single bolus dose of purified human renin resulted in a transient increase in blood pressure of approximately 30 mm Hg within 2 min. These results suggest that abnormalities in the angiotensinogen gene resulting in increased circulating levels of angiotensinogen could potentially contribute in part to the pathogenesis of essential hypertension.  相似文献   

13.
14.
Contemporary theories of drug abuse suggest that behavioral sensitization plays an important role in addiction. However, few studies have examined the mechanisms underlying behavioral sensitization to ethanol. The present study examined the ability of THIP (2, 4, or 8 mg/kg) and baclofen (5.0, 6.25, or 7.5 mg/kg), GABA(A) and GABA(B) agonists, respectively, to prevent development of sensitization to the locomotor stimulant effects of ethanol (2 g/kg) in DBA/2 J mice. Ethanol was administered immediately before four 5-min activity trials conducted at 48-h intervals. Administration of ethanol on each of the four trials resulted in behavioral sensitization in control groups. While having few effects on activity when given alone, both GABA agonists completely blocked the acute stimulant response to ethanol on the first trial. Administration of THIP prior to ethanol on each trial failed to prevent development of sensitization. In contrast, all doses of baclofen blocked sensitization. Assessment of blood ethanol levels 15, 50 and 100 min after administration of ethanol indicated that baclofen did not change the pharmacokinetics of ethanol. These results indicate an important role for GABA(B) receptors, but not GABA(A) receptors, in development of sensitization to the locomotor stimulant effects of ethanol.  相似文献   

15.
Aberrant expression of the platelet-derived growth factor alpha receptor (PDGF alpha R) has been linked to developmental abnormalities in vertebrate models, and has been implicated in multiple disease states in humans. To identify cis-acting regulatory elements that dictate expression of this receptor, we generated transgenic mice bearing the reporter gene beta-galactosidase (lacZ) under the control of a 6-kb promoter sequence. Expression of lacZ was monitored throughout embryonic development, with special focus on nervous tissue, skeleton, and several organ systems wherein PDGF alpha R expression is thought to play a pivotal role. In several independent transgenic mouse strains, lacZ expression recapitulated predominant features of PDGF alpha R gene expression during mouse development. These results demonstrate that critical tissue-specific regulatory elements for PDGF alpha R expression are located within a 6-kb upstream region of the PDGF alpha R gene.  相似文献   

16.
Insulin-like growth factor I (IGF-I) plays an important role in the development and function of the central nervous system (CNS). Little is known, however, about the factors and mechanisms involved in regulation of CNS IGF-I gene expression. To facilitate our goal to define mechanisms of IGF-I gene regulation in the CNS, we generated several lines of transgenic (Tg) mice that express firefly luciferase (LUC) under control of a 11.3-kb fragment from the 5' region of the rat IGF-I gene. Consistent with expression of the native IGF-I gene in murine brain, expression of the transgene predominated in neurons and astrocytes and used promoter 1, the major IGF-I promoter in the CNS and in most tissues. Transgene messenger RNA and protein expression rapidly increased after birth and peaked at postnatal (P) day 4 in all brain regions studied. LUC activities in all regions then gradually decreased to 0.5-4% of their peak values at P31, except for the olfactory bulb, which maintained about one third of its maximal activity. Compared with littermate controls, administration of dexamethasone decreased LUC activity and transgenic IGF-I messenger RNA abundance, whereas GH significantly increased the expression of the transgene. Addition of GH to cultured fetal brain cells from Tg mice for 12 h also increased LUC activity in a dose-dependent manner (77-388%). These results show that this IGF-I promoter transgene is expressed in a fashion similar to the endogenous IGF-I gene, and thus indicates that the transgene contains cis-elements essential for developmental, GH, and glucocorticoid regulation of IGF-I gene expression in the CNS. These Tg mice should serve as an useful model to study mechanisms of IGF-I gene regulation in the brain.  相似文献   

17.
Mice lacking surfactant protein A (SP-A) mRNA and protein in vivo were generated using gene targeting techniques. SP-A (-/-) mice have normal levels of SP-B, SP-C and SP-D mRNA and protein and survive and breed normally in vivarium conditions. Phospholipid composition, secretion and clearance, and incorporation of phospholipid precursors are normal in the SP-A (-/-) mice. Lungs of SP-A (-/-) mice have markedly decreased tubular myelin figures and clear Group B streptococci and Pseudomonas aeruginosa less efficiently than SP-A wild type mice. These studies of SP-A (-/-) mice demonstrate that SP-A has an important role in the innate immune system of the lung in vivo.  相似文献   

18.
19.
Expression of transgenes in mice often fails to follow the normal temporal and spatial pattern and to reach the same level as the endogenous copies. Only in exceptional cases has position-independent and copy number-dependent expression been reproduced. The size constraint of standard constructs may prevent the inclusion of important remote regulatory elements. Yeast artificial chromosomes (YACs) provide a means of cloning large DNA fragments and the transfer of YAC DNA into somatic cells has been reported. We have previously produced transgenic mice carrying a 35 kilobase YAC construct. Here we report the transfer of a 250 kilobase YAC covering the mouse tyrosinase gene into mice by pronuclear injection of gel-purified YAC DNA. The YAC was inserted into the mouse genome without major rearrangements and expression of the YAC-borne tyrosinase gene resulted in complete rescue of the albino phenotype of the recipient mice. Expression from the transgene reached levels comparable to that of the endogenous gene and showed copy number dependence and position independence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号