共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
针对基本和声搜索算法在优化支持向量机参数时,其局部搜索能力不足且后期收敛速度比较慢的缺点,提出利用改进和声搜索算法对支持向量机相关参数进行选择优化(IHS-SVM)的方法。在这一方法中,将原算法中控制参数—记忆库取值概率(HMCR)、微调概率(PAR)和调节宽度(bw)由静态值改进为随迭代次数的不同而进行动态变化。通过对UCI中的2个数据集进行分类正确率测试,并与未优化的支持向量机(SVM)和基本和声算法优化的支持向量机(HS-SVM)测试结果对比,证明了该改进方法的优越性。最后,将其用于柴油机故障诊断,并将分类正确率与未优化SVM和HSSVM分类结果进行比较,进一步说明改进和声搜索算法优化的支持向量机(IHS-SVM)能获得更高的分类结果正确率,即证明了该改进方法的实用性。 相似文献
3.
4.
5.
6.
基于小波分析和支持向量机的刀具故障诊断 总被引:1,自引:1,他引:1
为了有效地进行刀具状态监测,提出了一种基于小波分析和支持向量机相结合的刀具故障诊断方法。首先运用小波包对AE信号进行分解和重构,然后提取各个频带里的信号能量值,将该能量值作为特征参数输入到支持向量机,进行学习训练,完成对刀具磨损状态的有效识别。仿真结果表明该方法是有效的。 相似文献
7.
支持向量机在轴承故障诊断中的应用 总被引:5,自引:0,他引:5
支持向量机是建立在结构风险最小原理^[1]基础上,专门研究小样本情况下的学习规律。本文针对滚动轴承的加速度信号和声音信号的特点,选取识别能力好的时域无量纲指标作为支持向量机的特征矢量,对滚动轴承的四种典型故障进行模式识别。结果表明,支持向量机在滚动轴承故障诊断中有很出色的分类能力。 相似文献
8.
考虑到基于神经网络算法建立的预测模型虽然具有较好的预测精度,但是神经网络模型需要大量的训练样本,另外会增加模型的复杂程度,研究了一种基于改进型支持向量机的轧机轧制力预测模型,建立基于RBF核函数和多项式核函数的最小二乘支持向量机,并使用协同量子粒子群算法对混合函数的参数进行寻优,以提高预测模型的预测性能。由协同量子粒子群算法优化得到了基于改进型支持向量机的轧机轧制力预测模型中的RBF核函数参数γ值、惩罚系数c值、多项式核函数参数q值和两个核函数的权重a值。通过实例研究表明:使用本文研究的改进型支持向量机的轧制力预测模型预测相对误差在4%~6%之间,多组数据的平均值误差为4. 83%。验证了本文研究的基于改进型支持向量机的轧机轧制力预测模型的可行性。本文研究的预测模型相比其他3种对比模型耗时更长,但是相比之下提高了预测准确率,更具有实际意义。 相似文献
9.
10.
为了在线监测与识别汽车水泵轴承的故障类型,以WR3258152型汽车水泵轴承为研究对象,分析了其内部结构和常见故障。根据常见故障,预设了汽车水泵轴承的4类缺陷。在搭建的信号采集实验平台上,利用加速度传感器,分别采集了4类缺陷轴承在运转过程中的振动信号。利用Matlab软件对振动信号进行快速傅立叶变换和频域特征值计算,选用径向基核函数和粒子群参数优化方法建立支持向量机模型,并进行测试验证,结果表明:支持向量机分类方法能精确识别汽车水泵轴承常见的4类缺陷。为汽车水泵轴承的在线监测与故障诊断提供了参考。 相似文献
11.
提出了把支持向量机和遗传算法结合起来,应用于数控机床的刀具故障监测.应用支持向量机的分类步骤,能够有效地解决小样本问题.利用遗传算法对支持向量机所用核函数的参数进行优化,以致在较短的时间内找到全局最优解.这两种方法的结合是数控机床的刀具诊断的行之有效的方法. 相似文献
12.
以液压伺服系统的关键部件———电液伺服阀为研究对象,针对正常运行状态的数据样本较易获得,而故障样本难以获得的情况,应用单值支持向量机,仅仅依靠正常状态下的数据样本,建立起单值分类器,从而对电液伺服阀的运行状态进行识别。并用推广能力估计的方法,实现控制参数的选择。 相似文献
13.
通过分析主轴系统的故障特征和产生机理,提出了一种基于变分模态分解(VMD)与多尺度加权排列熵(MWPE)的故障特征提取方法和粒子群(PSO)优化支持向量机(SVM)的数控机床主轴系统故障分析诊断模型。首先,利用变分模态分解方法对所采集的主轴系统振动信号进行分解,得到若干有效本征模态分量(IMFs);其次,通过多尺度加权排列熵提取故障特征信息,利用SVM模型对故障特征信息进行分类与识别;为了提高模型的识别准确率,将引入粒子群优化算法(PSO)对SVM模型参数进行优化。实验验证表明,所提出的信号特征提取方法和状态识别模型在数控机床主轴系统的故障诊断方面取得了很好的成效,其故障识别准确率最高达99.56%。 相似文献
14.
为了提高支持向量机(SVM)在轴承故障诊断时的准确率和识别效率,提出了一种基于具有自适应白噪声的完整集成经验模态分解方法(CEEMDAN)、改进灰狼优化算法(IGWO)和支持向量机(SVM)相结合的故障诊断方法。首先用CEEMDAN与Shannon熵对振动信号消噪、分解,获得典型故障的敏感信号;其次,将粒子群算法(PSO)惯性权重w与粒子“飞行”速度v引入灰狼优化算法(GWO),得到IGWO,通过IGWO算法优化SVM得到诊断模型的最优参数,增强SVM的学习能力和泛化能力;最后,利用美国西储大学的轴承试验数据验证优化模型的有效性。结果表明,IGWO算法优化SVM的模型可以准确、高效地对轴承进行故障诊断;与GA、PSO、和GWO算法优化的SVM模型相比,该方法的故障诊断准确率和识别效率更高。 相似文献
15.
利用高碳当量灰铸铁组织强度试验数据,提出了一种基于支持向量机理论的灰铸铁强度预测模型。与多元线性回归、模糊回归和自适应模糊神经网络相比,该模型学习精度高且具有较好的泛化能力,能取得较好的预测效果。 相似文献
16.
17.
崔庆安 《组合机床与自动化加工技术》2008,(8)
双响应曲面法(DRSM)是实现稳健性参数设计(RPD)的主要实现方法,但是当过程较为复杂时,DRSM多项式模型的拟合性通常较差.文章提出一种基于支持向量机(SVM)的RPD实现方法.首先采用乘积表获取样本数据,然后利用SVM直接拟合质量特性均值与方差的均方误差(MSE),最后,以最小化MSE作为目标,利用梯度下降法进行参数优化.对叶形弹簧RPD的算例研究表明,所提方法拥有良好的拟合性与预测性,对于复杂的MSE响应曲面的重现能力较强,并且可以得到多个可行解.说明了方法的有效性与优越性. 相似文献
18.
柱塞泵是工程机械的关键部件,其性能好坏将直接影响整个设备的正常工作。针对柱塞泵提出基于特征选择支持向量机的智能诊断方法。对采集的振动信号基于小波包分解提取能量特征,然后利用Fisher准则函数选择对智能诊断最有利的特征,利用支持向量机进行训练,并将每个二类支持向量机按二叉树的组织形式构成系统的诊断模型。以汽车起重机柱塞泵为研究对象,其6种故障形式,包括正常、轴承内圈故障、滚动体故障、柱塞故障、配流盘故障、斜盘故障,用于检验所提算法的诊断能力,并与传统的BP神经网络和最近的蚁群神经网络方法进行对比。诊断结果表明:所提出的算法优于另外两种方法,具有较好的诊断效果。 相似文献