首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
研究了乙异羟肟酸(AHA)在TRPO简化流程反萃段的应用。研究结果表明,用0.5mol/L 0AHA水溶液可从30%TRPO/煤油中反萃负载的Am(Ⅲ),Eu(Ⅲ)和Pu(Ⅳ),但U(Ⅵ)不能反萃下来,藉此可以实现U与Am,Pu的分离,但所需的反萃级数较多。另外,由于负载的铁不能完全反萃,会给后续的碳酸铵反萃U(Ⅵ)带来麻烦。因此要将乙异羟肟酸用于TRPO简化流程,还必须解决铁的反萃。  相似文献   

2.
研究在模拟高放废液中加入乙羟肟酸(AHA)以消除酰胺荚醚(TBOPDA)萃取模拟高放废液过程中的界面污物。萃取实验结果表明:在模拟高放废液中加入AHA可显著降低Zr(Ⅳ)在两相中的分配比,此时,Pu(Ⅳ)的分配比仍足够大,它不影响TBOPDA对Pu(Ⅳ)的回收。反萃实验表明:在所研究的反萃条件下,1级反萃即可有效反萃TBOPDA有机相中的Zr(Ⅳ);3次错流反萃可有效反萃TBOPDA有机相中的Pu(Ⅳ);反萃液中加入AHA对Am(Ⅲ)的累计反萃率影响很小;提高反萃液的酸度可抑制TBOPDA有机相中Am(Ⅲ)的反萃。  相似文献   

3.
以40 %辛醇/煤油为稀释剂,研究了3种荚醚:N,N,N',N'-四丁基-3-氧-戊二酰胺(TBOPDA)、N,N,N',N'-四异丁基-3-氧-戊二酰胺(TiBOPDA)和N,N,N',N'-四丁基-3,6-二氧-辛二酰胺(TBDOODA)在硝酸介质中对Am(Ⅲ)和Eu(Ⅲ)的萃取热力学.TBOPDA、TiBOPDA和TBDOODA萃取镅的反应焓变分别为:-80.54、-81.99和-75.88 kJ/mol;求出了萃取反应自由能和熵值的变化;观测了不同平衡酸度下萃入有机相中金属离子的可见吸收光谱.研究结果表明,水相酸度在一定范围内变化时,有机相中金属离子的吸收峰位置和形状没有改变,说明萃取机理在一定酸度内不变.萃合物红外光谱的测量结果表明,萃取金属离子后,3种荚醚的羰基吸收峰均发生了显著位移,TBOPDA和TBDOODA的醚氧键位移分别为6 cm-1和3 cm-1.  相似文献   

4.
研究了N,N,N′,N′-四异丁基-3-氧杂戊二酰胺(TiBOGA)-40%正辛醇/煤油对超铀元素及Tc的萃取,研究结果表明,0.2mol/L,TiBOGA-40%正辛醇/煤油对Tc(Ⅶ),Am(Ⅲ),Np(Ⅳ),Np(Ⅴ),Pu(Ⅲ),Pu(Ⅳ)均有一定萃取能力,在酸度为1mol/L HNO3的模拟料液中,其分配比分别为:2.25,>2000,43,0.734,>2000,34。TiBOGA-40%正辛醇/煤油对各种离子的萃取能力受酸度和盐析剂浓度影响较大,用0.1mol/L HNO3能将除Am(Ⅲ)以外的其它几种离子从有机相中反萃下来。0.6mol/L H2C2O4对超铀元素的反萃效果都很好,经过1次或2次反萃,反萃率均可达99%以上。  相似文献   

5.
酰胺化合物对U(Ⅵ),Eu(Ⅲ),Sr(Ⅱ)和Fe(Ⅲ)的萃取   总被引:9,自引:4,他引:5  
研究了酰胺荚醚(PAⅡ)和二(1-甲基庚基)乙酰胺(N-503)有硝酸溶液中对U(Ⅵ),Eu(Ⅲ),Sr(Ⅱ)和Fe(Ⅲ)的萃取。结果表明,PAⅡ对U(Ⅵ),Eu(Ⅲ),Sr(Ⅱ)均有良好的萃取性能,N-503只萃取U(Ⅵ),两种萃取剂对Fe(Ⅲ)均不萃取。  相似文献   

6.
为开发Pu(Ⅳ)的高选择性萃取剂,实现废液中微量钚的回收,以正十二烷作为稀释剂,研究2,2′-((4-乙氧基-1,2-亚苯基)双(氧基))双(N,N-双(2-乙基己基)乙酰胺)(4-EthoxyBenzoDODA)对U(Ⅵ)、Pu(Ⅳ)的萃取行为,以及两相混合振荡时间、水相硝酸浓度和有机相萃取剂浓度对U(Ⅵ)、Pu(Ⅳ)萃取分配比的影响。硝酸的萃取实验结果表明,4-EthoxyBenzoDODA(KH=0.14)比BenzoDODA(KH=0.44)碱性弱,更有利于选择萃取离子势较强的Pu(Ⅳ)。对U(Ⅵ)、Pu(Ⅳ)的萃取实验表明,Pu(Ⅳ)对U(Ⅵ)的分离因子最高可达6.9,Pu(Ⅳ)对Eu(Ⅲ)的分离因子最高可达223。采用斜率法分析了4.0 mol/L HNO3浓度下U(Ⅵ)萃合物的组成,主要为UO2(NO3)2·L)、Pu(Ⅳ)(Pu(NO3)4·L和Pu(NO3)4·L2共存。使用硝酸肼或者硝酸羟胺等还原反萃剂,可以将负载有机相中98%的Pu反萃至水相中。结果表明,4-EthoxyBenzoDODA对Pu(Ⅳ)具有一定的选择性。  相似文献   

7.
为了进一步优化Purex流程,研究了甲醛肟(FO)的硝酸水溶液对30%TBP/煤油中Pu(Ⅳ)的还原反萃取行为,考察了FO浓度、两相接触时间、两相相比、反萃液硝酸浓度、NO3-浓度、有机相U浓度和温度对Pu(Ⅳ)的还原反萃的影响。结果表明:延长两相接触时间能显著提高Pu(Ⅳ)的反萃率,增加甲醛肟的浓度、降低反萃液酸度、降低NO3-浓度、增加有机相U浓度和升高温度也对Pu(Ⅳ)的反萃率有一定的提高。采用16级逆流反萃取实验(还原反萃段12级,补充萃取段4级),模拟Purex流程1B槽U/Pu分离工艺,在相比(1BF∶1BX∶1BS)为4∶1∶1的条件下,U和Pu 的回收率均大于99.99%;铀中去钚的分离因子SF(Pu/U)=1.0×104;钚中去铀的分离因子SF(U/Pu)=8.3×104。FO作为新型络合 还原反萃取剂,可有效实现铀钚分离。  相似文献   

8.
研究了氨基羟基脲(HSC)的硝酸水溶液对30%TBP/煤油中Pu(Ⅳ)的还原反萃取行为,考察了HSC浓度、两相接触时间、两相相比、反萃液硝酸浓度、NO3-浓度、有机相U浓度和温度对Pu(Ⅳ)还原反萃的影响。结果表明:延长两相接触时间能显著提高Pu(Ⅳ)的反萃率,增加氨基羟基脲的浓度、降低反萃液酸度、降低NO3-浓度、增加有机相U浓度和升高温度也对Pu(Ⅳ)的反萃率有一定的提高。采用16级逆流反萃取实验(还原反萃段10级,补充萃取段6级),模拟Purex流程1B槽U/Pu分离工艺,在相比(1BF∶1BX∶1BS)为4∶1∶1的条件下,U的收率大于99.99%,Pu的收率大于99.99%;铀中去钚的分离因数SFPu/U=2.8×104;钚中去铀的分离因数SFU/Pu=5.9×104。HSC作为还原反萃取剂,可有效实现铀钚分离。  相似文献   

9.
HEDPA介质中TRPO对超铀元素的萃取   总被引:1,自引:1,他引:0  
研究了在HEDPA介质中TRPO对超铀元素的萃取性能。结果表明:在一定浓度HEDPA存在的条件下,除Tc(Ⅶ)外,TRPO对Am(Ⅲ),Pu(Ⅲ),Pu(Ⅳ),Np(Ⅵ)都具有很低的萃取分配比。表面配合反萃剂可以用于TRPO有机相中锕系元素的反萃。  相似文献   

10.
本文在带有阴阳极的恒界面池中研究了HNO_3-N_2H_5NO_3(H_2O)/UO_2(NO_3)_2-HNO_3(30%TBP-煤油)体系在U(Ⅵ)电解还原过程中的U(Ⅵ)反萃和U(Ⅳ)萃取动力学。这是U(Ⅵ)电还原反萃动力学研究的第二步。根据实验结果和数据处理,得到U(Ⅵ)反萃和U(Ⅳ)萃取过程的表观活化能分别为36.02kJ/mol和21.13kJ/mol;U(Ⅵ)反萃和U(Ⅳ)萃取速率随两相搅拌速率的增大而增大;U(Ⅵ)反萃和U(Ⅳ)萃取过程均由扩散控制。随着阴极电位的降低,U(Ⅵ)反萃和U(Ⅳ)萃取速率均增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号