共查询到19条相似文献,搜索用时 93 毫秒
1.
2.
提出了一种基于角点检测、AdaBoost算法和C-V方法的平面旋转人脸检测及特征定位方法.方法首先根据AdaBoost算法训练样本得到脸、眼、鼻、嘴4个检测器;然后以角点作为眼睛的候选点,枚举任意两个角点构造可能的人脸区域,并在区域内运用人脸检测器进行检测;接着利用眼、鼻、嘴检测器检测出人脸特征所在的矩形区域;最后利用C-V方法从各个特征区域中分割出人脸特征的轮廓,进而得到人脸关键特征点的位置.在CMU平面旋转测试集上的检测率为94.6%,误报24个,提取出的特征点位置准确.实验结果表明方法是有效的. 相似文献
3.
4.
5.
针对复杂环境下基于肤色模型的人脸检测误检率较高以及Adaboost算法对高分辨率图像时间效率低,提出了一种新的结合肤色模型和皮肤纹理特征以及Adaboost级联分类器的人脸检测方法,并改进了基于纹理刷色阶偏差法的皮肤纹理特征提取方法。该算法充分融合了肤色模型简单快捷、皮肤纹理突出的特性以及Adaboost级联分类器检测率高等优点。实验表明,该方法检测率高且有较好的鲁棒性。 相似文献
6.
7.
9.
文章基于当今最为流行的AdaBoost算法,训练出自己的人脸检测级联分类器,通过对人脸图像方差特点的统计分析,确定了人脸方差的阈值,增加了方差预处理.增加方差预处理后训练出的级联分类器在人脸检出率相对较高的前提实现了检测速度的提升,增强了人脸检测的实时应用性. 相似文献
10.
针对传统图像识别算法对疲劳驾驶检测精度差、准确率低的缺陷,提出了一种利用人脸图像特征提取的疲劳驾驶检测方法。首先将实时采集到的车辆驾驶员面部图像进行预处理,借助Dlib检测出图像中的人脸区域并进行人脸图像特征点的标注,然后使用基于眼睛纵横比(Eye Aspect Ratio,EAR)的方法进行图像中人眼疲劳特征的识别,基于嘴唇纵横比(Mouth Aspect Ratio,MAR)的方法进行图像中嘴部疲劳特征的识别,最后利用支持向量机(SVM)的方法将两种特征融合起来进行疲劳驾驶检测。实验表明,该方法可以准确地定位出特征点,疲劳检测的识别率达84.29%,可以有效地识别出疲劳状态。 相似文献
11.
针对人脸检测问题中快速性与准确性难以同时满足的情况,提出了一种将肤色和脸部特征相结合的方法来检测人脸.由于通过基于肤色的算法能快速定位出人脸大致位置,因而检测速度能达到实时的要求;同时利用脸部特征进一步细检,可保证检测的精确性. 相似文献
12.
论文针对彩色图片的人脸检测在复杂的背景下检测难度大、检测时间长的问题,提出一种将非线性分段色彩变化的肤色模型、Gabor特征提取和多层感知机MLP分类决策相结合的人脸检测算法。该算法首先对输入图像进行自适应的光照补偿,根据非线性分段色彩变化建立的YCb'Cr'肤色模型筛选出潜在的人脸区域;然后对潜在人脸区域进行Gabor小波特征分析,利用MLP网络进行分类判别。通过计算机仿真得出此算法计算复杂度低、检测时间短。 相似文献
13.
14.
15.
16.
17.
一种基于HVS加权颜色特征的图像检索算法 总被引:1,自引:1,他引:1
提出一种基于人类视觉系统(HVS)的加权颜色特征图像检索算法.首先对图像进行分块,提取各分块的主色作为颜色特征,然后利用人类视觉特性,对所获取的颜色特征进行加权处理,获得加权"主色"颜色特征.实验结果表明,基干所提出的加权"主色"颜色特征的图像检索算法较单纯依靠直方图和分块主色法具有更好的检索精度. 相似文献
18.
人脸检测广泛应用到人脸识别、数字视频处理、安全访问控制、视觉监测、基于内容的检索等领域.比较众多人脸检测算法,文章提出了一种改进的基于Adaboost算法的人脸检测算法.该算法的核心是肤色分割结合基于Adaboost算法的人脸检测.首先,对彩色图像进行肤色分割,通过肤色区域的大小和长宽比等规则去除部分类肤色区域,得到可疑的人脸区域.其次,基于Adaboost算法的灰度特征得到最终的人脸.通过大量彩色图像的实验,证实了该方法的准确性和鲁棒性. 相似文献