首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This study presents a healthcare monitoring architecture coupled with wearable sensor systems and an environmental sensor network for monitoring elderly or chronic patients in their residence. The wearable sensor system, built into a fabric belt, consists of various medical sensors that collect a timely set of physiological health indicators transmitted via low energy wireless communication to mobile computing devices. Three application scenarios are implemented using the proposed network architecture. The group-based data collection and data transmission using the ad hoc mode promote outpatient healthcare services for only one medical staff member assigned to a set of patients. Adaptive security issues for data transmission are performed based on different wireless capabilities. This study also presents a monitoring application prototype for capturing sensor data from wireless sensor nodes. The implemented schemes were verified as performing efficiently and rapidly in the proposed network architecture.  相似文献   

2.
Remote Patient Monitoring Within a Future 5G Infrastructure   总被引:1,自引:1,他引:0  
Systems of wearable or implantable medical devices (IMD), sensor systems for monitoring and transmitting physiological recorded signals, will in future health care services be used for purposes of remote monitoring. Today, there exist several constraints, probably preventing the adoption of such services in clinical routine work. Within a future 5G infrastructure, new possibilities will be available due to improved addressing solutions and extended security services in addition to higher bandwidth in the wireless communication link. Thus 5G solutions can represent a paradigm shift regarding remote patient’s monitoring and tracking possibilities, with enhancement in transmitting information between patients and health care services. Some aspects of new possibilities are highlighted in describing a realistic scenario within a future 5G framework.  相似文献   

3.
With an increasingly mobile society and the worldwide deployment of mobile and wireless networks, the wireless infrastructure can support many current and emerging healthcare applications. This could fulfill the vision of “Pervasive Healthcare” or healthcare to anyone, anytime, and anywhere by removing locational, time and other restraints while increasing both the coverage and the quality. In this paper, we present applications and requirements of pervasive healthcare, wireless networking solutions and several important research problems. The pervasive healthcare applications include pervasive health monitoring, intelligent emergency management system, pervasive healthcare data access, and ubiquitous mobile telemedicine. One major application in pervasive healthcare, termed comprehensive health monitoring is presented in significant details using wireless networking solutions of wireless LANs, ad hoc wireless networks, and, cellular/GSM/3G infrastructure-oriented networks. Many interesting challenges of comprehensive wireless health monitoring, including context-awareness, reliability, and, autonomous and adaptable operation are also presented along with several high-level solutions. Several interesting research problems have been identified and presented for future research.  相似文献   

4.
Punj  Roopali  Kumar  Rakesh 《Wireless Networks》2019,25(3):1125-1157

According to the World Health Organization, most of the world population is affected by chronic diseases, obesity, cardiovascular diseases and diabetes while another dominant problem is of aging population. Thus, it is desirable to have cost effective solutions for health monitoring, especially for countries that have minimum conventionally trained healthcare staff and infrastructure. Healthcare has shifted from hospital dominant services to patient dominant services which has thrived WBANs to provide ubiquitous health monitoring by virtue of wearable or implantable sensor nodes that commonly monitor biological signals. As the society becomes more health conscious, WBANs have the potential to revolutionize the way people integrate their health and information technology. Hence, WBANs are desired to strengthen conventional healthcare systems. Notwithstanding the current achievements, technological advances, proposed solutions and commercialized products; WBANs still experience many obstacles in their foolproof adoption. This paper surveys the plethora of WBAN applications and network architecture in detail used for data collection, data transmission and data analysis that form sensor analyst system in the realm of Internet of Things. Wireless communicational technologies are also discussed in this paper. Also, we have categorized the routing protocols and have provided with their critical qualitative analysis. Towards the end we discuss several projects in the field of WBANs and some open research areas. These findings on how the sensor nodes, newest routing protocols and data analysis techniques influence ubiquitous health monitoring sets this survey apart from the already existing surveys on WBANs.

  相似文献   

5.
A point-of-care system for continuous health monitoring should be wearable, easy to use, and affordable to promote patient independence and facilitate acceptance of new home healthcare technology. Reconfigurability, interoperability, and scalability are important. Standardization supports these requirements, and encourages an open market where lower product prices result from vendor competition. This paper first discusses candidate standards for wireless communication, plug-and-play device interoperability, and medical information exchange in point-of-care systems. It then addresses the design and implementation of a wearable, plug-and-play system for home care which adopts the IEEE 1073 Medical Information Bus (MIB) standards, and uses Bluetooth as the wireless communication protocol. This standards-based system maximizes user mobility by incorporating a three-level architecture populated by base stations, wearable data loggers, and wearable sensors. Design issues include the implementation of the MIB standards on microcontroller-driven embedded devices, low power consumption, wireless data exchange, and data storage and transmission in a reconfigurable body-area network.  相似文献   

6.
Contemporary medicine suffers from many shortcomings in terms of successful disease diagnosis and treatment, both of which rely on detection capacity and timing. The lack of effective, reliable, and affordable detection and real-time monitoring limits the affordability of timely diagnosis and treatment. A new frontier that overcomes these challenges relies on smart health monitoring systems that combine wearable sensors and an analytical modulus. This review presents the latest advances in smart materials for the development of multifunctional wearable sensors while providing a bird's eye-view of their characteristics, functions, and applications. The review also presents the state-of-the-art on wearables fitted with artificial intelligence (AI) and support systems for clinical decision in early detection and accurate diagnosis of disorders. The ongoing challenges and future prospects for providing personal healthcare with AI-assisted support systems relating to clinical decisions are presented and discussed.  相似文献   

7.
Through harvesting energy from the environment or human body, self-power wearable electronics have an opportunity to break through the limitations of battery supply and achieving long-term continuous operation. Here, a wireless wearable monitoring system driven entirely by body heat is implemented. Based on the principle of maximizing heat utilization, while optimizing internal resistance and heat dissipation, the stretchable TEG improves the power density of previous similar devices from only a few microwatts per square centimeter to tens and makes it possible to continuously drive wireless wearable electronic systems. Furthermore, ceaseless self-power energy gives wearable electronics unparalleled continuous working ability, which can realize the tracking and monitoring of biochemical and physiological indicators at different time scale. A practical system demonstrates the ability to real-time monitor heart rate, sweat ingredient and body motion at a high sampling rate. This study marks an important advance of self-powered wearable electronics for wirelessly real-time healthy monitoring.  相似文献   

8.
Traditional wearable devices have various shortcomings, such as uncomfortableness for long-term wearing, and insufficient accuracy, etc. Thus, health monitoring through traditional wearable devices is hard to be sustainable. In order to obtain healthcare big data by sustainable health monitoring, we design “Smart Clothing”, facilitating unobtrusive collection of various physiological indicators of human body. To provide pervasive intelligence for smart clothing system, mobile healthcare cloud platform is constructed by the use of mobile internet, cloud computing and big data analytics. This paper introduces design details, key technologies and practical implementation methods of smart clothing system. Typical applications powered by smart clothing and big data clouds are presented, such as medical emergency response, emotion care, disease diagnosis, and real-time tactile interaction. Especially, electrocardiograph signals collected by smart clothing are used for mood monitoring and emotion detection. Finally, we highlight some of the design challenges and open issues that still need to be addressed to make smart clothing ubiquitous for a wide range of applications.  相似文献   

9.
The next-generation wearable biosensors with highly biocompatible, stretchable, and robust features are expected to enable the change of the current reactive and disease-centric healthcare system to a personalized model with a focus on disease prevention and health promotion. Herein, a muscle-fiber-inspired nonwoven piezoelectric textile with tunable mechanical properties for wearable physiological monitoring is developed. To mimic the muscle fibers, polydopamine (PDA) is dispersed into the electrospun barium titanate/polyvinylidene fluoride (BTO/PVDF) nanofibers to enhance the interfacial-adhesion, mechanical strength, and piezoelectric properties. Such improvements are both experimentally observed via mechanical characterization and theoretically verified by the phase-field simulation. Taking the PDA@BTO/PVDF nanofibers as the building blocks, a nonwoven light-weight piezoelectric textile is fabricated, which hold an outstanding sensitivity (3.95 V N−1) and long-term stability (<3% decline after 7,400 cycles). The piezoelectric textile demonstrates multiple potential applications, including pulse wave measurement, human motion monitoring, and active voice recognition. By creatively mimicking the muscle fibers, this work paves a cost-effective way to develop high-performance and self-powered wearable bioelectronics for personalized healthcare.  相似文献   

10.
Rapid development of wearable devices and mobile cloud computing technologies has led to new opportunities for large scale e-healthcare systems. In these systems, individuals’ health information are remotely detected using wearable sensors and forwarded through wireless devices to a dedicated computing system for processing and evaluation where a set of specialists namely, hospitals, healthcare agencies and physicians will take care of such health information. Real-time or semi-real time health information are used for online monitoring of patients at home. This in fact enables the doctors and specialists to provide immediate medical treatments. Large scale e-healthcare systems aim at extending the monitoring coverage from individuals to include a crowd of people who live in communities, cities, or even up to a whole country. In this paper, we propose a large scale e-healthcare monitoring system that targets a crowd of individuals in a wide geographical area. The system is efficiently integrating many emerging technologies such as mobile computing, edge computing, wearable sensors, cloud computing, big data techniques, and decision support systems. It can offer remote monitoring of patients anytime and anywhere in a timely manner. The system also features some unique functions that are of great importance for patients’ health as well as for societies, cities, and countries. These unique features are characterized by taking long-term, proactive, and intelligent decisions for expected risks that might arise by detecting abnormal health patterns shown after analyzing huge amounts of patients’ data. Furthermore, it is using a set of supportive information to enhance the decision support system outcome. A rigorous set of evaluation experiments are conducted and presented to validate the efficiency of the proposed model. The obtained results show that the proposed model is scalable by handling a large number of monitored individuals with minimal overhead. Moreover, exploiting the cloud-based system reduces both the resources consumption and the delay overhead for each individual patient.  相似文献   

11.
Recent developments of micro-sensors and flexible electronics allow for the manufacturing of health monitoring devices, including electrocardiogram (ECG) detection systems for inpatient monitoring and ambulatory health diagnosis, by mounting the device on the chest. Although some commercial devices in reported articles show examples of a portable recording of ECG, they lose valuable data due to significant motion artifacts. Here, a new class of strain-isolating materials, hybrid interfacial physics, and soft material packaging for a strain-isolated, wearable soft bioelectronic system (SIS) is reported. The fundamental mechanism of sensor-embedded strain isolation is defined through a combination of analytical and computational studies and validated by dynamic experiments. Comprehensive research of hard-soft material integration and isolation mechanics provides critical design features to minimize motion artifacts that can occur during both mild and excessive daily activities. A wireless, fully integrated SIS that incorporates a breathable, perforated membrane can measure real-time, continuous physiological data, including high-quality ECG, heart rate, respiratory rate, and activities. In vivo demonstration with multiple subjects and simultaneous comparison with commercial devices captures the SIS's outstanding performance, offering real-world, continuous monitoring of the critical physiological signals with no data loss over eight consecutive hours in daily life, even with exaggerated body movements.  相似文献   

12.
Herein we present a textile wearable electrochemical transistor by functionalizing a single cotton yarn with semiconducting polymer. The organic electrochemical transistor (OECT), which is low cost and completely integrated e-textile, is decorated by adsorption of the fungal laccase POXA1b, and is used as biosensor for the direct detection of Tyrosine (L-Tyr) without the use of electron mediators. The detection of Tyr in real-case scenario such as human physiological fluids would own a paramount importance in noninvasive analysis of the patient's condition, monitoring and preventing several pathologies. To assess the reaction progression, the redox process is studied by UV–visible absorption with test reference molecule of 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS): the results confirmed that the oxidation reaction is driven by the presence of laccase enzyme and direct electron transfer occurred. The modulation of the signal response and the kinetic of the signal is used to detect Tyr molecule in aqueous solution and the role of the enzyme adsorption on the textile is analyzed. A kinetic analysis of the characteristic modulation times of the sensing curves, confirm the sensing properties of the textile device. The textile-based biosensor is demonstrated to monitor human health biomarkers through wearable applications in a non-invasive way, finding potential application in sport, healthcare and working safety.  相似文献   

13.
Recent developments in biosensor and wireless technology have led to a rapid progress in wearable real time health monitoring. Unlike wired networks, wireless networks are subject to more packet loss and congestion. In this paper, we propose a congestion control and service prioritization protocol for real time monitoring of patients’ vital signs using wireless biomedical sensor networks. The proposed system is able to discriminate between physiological signals and assign them different priorities. Thus, it would be possible to provide a better quality of service for transmitting highly important vital signs. Congestion control is performed by considering both the congestion situation in the parent node and the priority of the child nodes in assigning network bandwidth to signals from different patients. Given the dynamic nature of patients’ health conditions, the proposed system can detect an anomaly in the received vital signs from a patient and hence assign more priority to patients in need. Simulation results confirm the superior performance of the proposed protocol. To our knowledge, this is the first attempt at a special-purpose congestion control protocol specifically designed for wireless biosensor networks.  相似文献   

14.
15.
The challenges of growing and aging populations combined with limited clinical resources have created huge demand for wearable and portable healthcare devices. Research advances in wearable biosensors have made it easier to achieve reliable noninvasive monitoring of health and body status. In this review, recent progress in the development of body computing systems for personalized healthcare is presented, with key considerations and case studies. Critical form factors for wearable sensors, their materials, structures, power sources, modes of data communication, and the types of information they can extract from the body are summarized. Statistically meaningful data analysis considerations, including using cohort and longitudinal correlation studies, are reviewed to understand how raw sensor signals can provide actionable information on the state of the body. This informs discussions on how collected sensor data can be used for personalized and even preventative care, such as by guiding closed-loop medical interventions. Finally, outstanding challenges for making wearable sensor systems reliable, practical, and ubiquitous are considered in order to disrupt traditional medical paradigms with personalized and precision care.  相似文献   

16.
Body movement is responsible for most of the interference during physiological data acquisition during normal daily activities. In this paper, we introduce nonwoven fabric active electrodes that provide the comfort required for clothing while robustly recording physiological data in the presence of body movement. The nonwoven fabric active electrodes were designed and fabricated using both hand- and screen-printing thick-film techniques. Nonstretchable nonwoven (Evolon 100) was chosen as the flexible fabric substrate and a silver filled polymer ink (Creative Materials CMI 112-15) was used to form a transducer layer and conductive lines on the nonwoven fabrics. These nonwoven fabric active electrodes can be easily integrated into clothing for wearable health monitoring applications. Test results indicate that nonwoven textile-based sensors show considerable promise for physiological data acquisition in wearable healthcare monitoring applications.  相似文献   

17.
The unprecedented medical achievements of the last century have dramatically improved our quality of life. Today, the high cost of many healthcare approaches challenges their long‐term financial sustainability and translation to a global scale. The convergence of wearable electronics, miniaturized sensor technologies, and big data analysis provides novel opportunities to improve the quality of healthcare while decreasing costs by the very early stage detection and prevention of fatal and chronic diseases. Here, some exciting achievements, emerging technologies, and standing challenges for the development of non‐invasive personalized and preventive medicine devices are discussed. The engineering of wire‐ and power‐less ultra‐thin sensors on wearable biocompatible materials that can be placed on the skin, pupil, and teeth is reviewed, focusing on common solutions and current limitations. The integration and development of sophisticated sensing nanomaterials are presented with respect to their performance, showing exemplary implementations for the detection of ultra‐low concentrations of biomarkers in complex mixtures such as the human sweat and breath. This review is concluded by summarizing achievements and standing challenges with the aim to provide directions for future research in miniaturized medical sensor technologies.  相似文献   

18.
在测井仪器的研发期间,对仪器的功耗要进行监测,利于可以科学的给仪器搭配适合的电池,为此设计了可以在大动态情况下,连续的对直流的小电流进行监测的检测系统,对于系统有连续监测小电流的独特需求,设计出了运用高输入阻抗的方法和差分运放的I/V转换方法选用放大信号、多级硬件的电路滤波和数字的滤波相综合形式的制止干扰的方法,主要是制止系统内的噪声和系统外在的工频干扰;在此之外还运用软件来达到自动量程的效替来实现大范围的电流检测要求,通过实验来实现使用的需求.  相似文献   

19.
Human sweat contains vast physiological information, which has been a promising resource for on-body and real-time health monitoring. Wearable sweat sensors have recently attracted an ever-increasing interest due to their promising capabilities for continuously tracking changes in health status. However, the commercialization of sweat sensors is seriously hindered by drawbacks of materials including high manufacturing and consumables costs, complex integration technology, as well as limited electrochemical signal transduction. In this review, sweat sensing principles are elaborately interpreted, and the latest advances in functional materials for biomarkers sensing in sweat are systematically summarized. Subsequently, the complex structure–activity relationships between various functional materials and sensing capabilities are further elucidated by coupling chemical structures, geometrics, electrochemical properties, and approaches for materials manufacturing. Furthermore, the integration of each component into sensing device for sweat detection and analysis is also discussed. Finally, challenges and opportunities for wearable sweat sensors are delineated in the development of future personalized and predictive healthcare.  相似文献   

20.
A virtual world has now become a reality as augmented reality (AR) and virtual reality (VR) technology become commercially available. Similar to how humans interact with the physical world, AR and VR systems rely on human–machine interface (HMI) sensors to interact with the virtual world. Currently, this is achieved via state of-the-art wearable visual and auditory tools that are rigid, bulky, and burdensome, thereby causing discomfort during practical application. To this end, a skin sensory interface has the potential to serve as the next-generation AR/VR technology because skin-like wearable sensors have advantages in that they can be ultrathin, ultra-soft, conformal, and imperceptible, which provides the ultimate comfort and immersive experience for users. In this progress report, nanowire-based soft wearable HMI sensors including acoustic, strain, pressure sensors, and physiological sensors are reviewed that may be adopted as skin sensory inputs in future AR/VR systems. Further, nanowire-based soft contact lenses, haptic force, and thermal and vibration actuators are covered as potential means of feedback for future AR/VR systems. Considering the possible effects of the virtual world on human health, skin-like wearable artery pulses, glucose, and lactate sensors are also described, which may enable imperceptible health monitoring during future AR/VR practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号