首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用氢化脱氢TA15钛合金粉末为原料,通过模压成形与真空烧结及进一步热等静压(hot isostatic pressing,HIP)处理,制备TA15钛合金,对烧结合金及其热等静压后的组织形貌与拉伸性能进行分析与测试,研究成形压力及烧结温度对该合金组织与性能的影响。结果表明,随压制压力增大或烧结温度升高,烧结体的抗拉强度和伸长率都提高。热等静压后晶粒趋于球化,抗拉强度提升不明显,伸长率提升较显著。压制压力为700 MPa,烧结温度为1 300℃时,烧结合金的抗拉强度和伸长率都达到最大值,分别为1 050 MPa和2.81%。经HIP处理后合金的抗拉强度最高达到1 170 MPa,最大伸长率为5.6%。  相似文献   

2.
采用冷等静压法(cool isostatic pressing,CIP)制得大尺寸钼骨架,对骨架进行渗铜制备Mo-30Cu合金,并在350℃进行温轧,研究CIP压力及熔渗温度和熔渗时间对合金致密度的影响以及合金的轧制性能。结果表明:采用冷等静压法在120~180 MPa压力下可制备孔隙分布均匀,无分层等缺陷的钼骨架,熔渗后坯料的线收缩率随CIP压力增加而逐渐降低,最佳CIP压力为160 MPa;在一定范围内升高熔渗温度与延长保温时间均有助于提高合金致密度;冷等静压–溶渗法制备的高致密Mo-30Cu合金具有较好的温轧性能,有效提高了大尺寸试样的加工性能。CIP压力为160 MPa压制的骨架在1 350℃渗铜6 h后相对密度达到99%以上,合金的温轧变形量可达到65%。  相似文献   

3.
以4J29-Kovar预合金粉末为原料,采用注射成形技术制备Kovar合金,研究烧结温度与烧结时间对合金的密度、硬度、抗拉强度以及热导率与热膨胀系数等性能的影响。结果表明,Kovar合金的烧结密度随烧结温度升高或烧结时间延长而增大,最佳烧结温度为1 350℃,继续升高温度至1 400℃时合金晶粒异常粗大。在1 350℃下,随烧结时间从1.5 h延长至4 h,合金的热导率增加,抗拉强度先增大后减小,烧结时间为3 h时强度达到最大,硬度基本不变,HV维持在174左右,除烧结时间为1.5 h的样品热膨胀系数偏低外,其它样品的热膨胀系数在4.6×10~(-6)~5.4×10~(-6) K~(-1)(20~400℃)之间。最佳烧结时间为3 h,所得合金的相对密度达到95.7%,热导率为15.126W/(m?K),抗拉强度为397 MPa,满足Kovar合金与玻璃、陶瓷等材料进行电子封接的要求。  相似文献   

4.
对常压预烧结(1.350℃×4 h)后的3Y-TZP陶瓷试样进行热等静压烧结,系统研究烧结温度和压力对陶瓷的烧结性能、力学性能以及相组成的影响.结果表明,在高温、高压下对3Y-TZP陶瓷进行热等静压烧结,温度比压力的影响更显著.从而得到一个最佳的热等静压烧结制度:1300℃×1 h,压力150 MPa,此时试样达到最佳力学性能,HV和Kic分别为14.2 MPa和17.7 MPa·m1/2.用XRD和SEM分析3Y-TZP陶瓷的组织结构发现,烧结后3Y-TZP陶瓷中ZrO2几乎全部以四方相形式存在,且ZrO2平均晶粒尺寸在l~3μm之间,主要的断裂模式是沿晶断裂,并伴随有少量的穿晶断裂.  相似文献   

5.
采用纳米级β-SiC粉末、Si粉末、C粉末以及微米级TiH_2粉末为原料,利用热等静压原位合成工艺制备了SiC–TiC复相陶瓷,研究了不同原位合成反应和烧结工艺对复相陶瓷微观组织及力学性能的影响。结果表明:以SiC、TiH_2、C粉末为原料的原位合成反应,无明显副反应发生,更有益于制备成分符合预期、致密度良好且性能优秀的SiC–TiC复相陶瓷。在1600℃,120 MPa,4 h等静压烧结工艺下原位合成得到的体积分数为SiC–32%TiC复相陶瓷具有最好的致密度、硬度、三点弯曲强度以及良好的断裂韧性,分别达到98.7%、21.2 GPa、428 MPa和5.5 MPa·m1/2。提高热等静压压力有助于提高材料的烧结扩散活性,从而提高材料的致密度,有益于力学性能的提升。  相似文献   

6.
采用热等静压烧结法制备Mo–Na合金,研究了热等静压烧结温度对Mo–Na合金显微组织、硬度、密度及Na质量分数的影响,分析了Mo–Na合金热等静压烧结的致密化过程。结果表明:采用热等静压烧结法制备的Mo–Na合金显微组织细小均匀,平均晶粒尺寸在10 μm以下。随着热等静压烧结温度的升高,相对密度及硬度随之升高,在1100 ℃时达到最大,分别为99.58%和HRA 54.50,热等静压过程中液相的形成对Mo–Na合金的致密化起到了重要作用。热等静压过程很好地避免了低熔点Na金属高温烧结过程中的挥发,在1100 ℃烧结后Na质量分数基本无变化。  相似文献   

7.
研究了不同后续热等静压工艺对镀铜钼粉制取的MoCu30合金性能的影响。研究发现,表面镀铜钼粉所制得MoCu30合金在1130℃温度下、压力100 MPa条件下进行2 h后续热等静压处理后,提高了合金的综合性能:其中铜相随着钼骨架受力而发生变形、流动,促进了组织中铜相的均匀分布以及孔洞的减少,使合金的致密度达到99.7%,接近全致密;高温处理时铜晶粒长大,晶界数量减少,这样降低了晶界与孔洞缺陷对声子的散射作用,从而增强了MoCu30合金的声子导热机制,提高了合金的热导率;相对于未经后续热等静压处理的MoCu30合金,合金热等静压处理后铜相分布更加均匀,合金受力时塑性较好的铜相优先发生变形,同时减少了孔洞等裂纹源,使得合金的25℃拉伸及压缩屈服强度略有提高,分别达到451, 543 MPa,而合金的400℃拉伸及压缩屈服强度也有所增加,分别达到349, 372 MPa。  相似文献   

8.
纯钒粉末通过预清洗、冷等静压(CIP)成形、热等静压(HIP)的工艺制备成纯钒块材,采用拉伸实验、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线结构衍射仪(XRD)等技术对其力学性能和微观组织结构进行了研究.结果表明:在1 200℃条件下,纯钒的强度、伸长率和密度随热等静压压力升高而增加,随热等静压保温时间延长而下降;在1 200℃/120MPa/1h工艺条件下制备的纯钒试样相对密度达99.7%,抗拉强度和伸长率分别达552MPa和20%.纯钒的晶粒结合紧密,呈单相,为板条状马氏体结构,其断裂方式以解理断裂为主.  相似文献   

9.
采用等离子旋转电极雾化-热等静压工艺制备了UNS S32750超级双相不锈钢。利用光学显微镜、扫描电子显微镜、电子背散射衍射、万能试验机等手段研究了热等静压UNS S32750超级双相不锈钢固溶处理前后的显微组织和力学性能。结果表明:采用等离子旋转电极雾化制备的UNS S32750超级双相不锈钢粉末在150 MPa 压力下,经1200 ℃×3 h热等静压烧结后实现了致密化,相对密度为99.7%。随炉缓冷过程中,烧结件中析出的σ相导致材料韧性显著下降。经1035 ℃×1 h固溶处理后水淬,σ相完全溶解,材料韧性显著提高,显微组织为α和γ两相组织,体积比为65:35,抗拉强度791 MPa,屈服强度586 MPa,断后伸长率38%,冲击吸收功236 J。  相似文献   

10.
电子封装用注射成形Mo/Cu合金烧结工艺的研究   总被引:6,自引:1,他引:6  
本文采用粉末注射成形工艺制备电子封装用Mo/Cu合金 ,重点研究了烧结工艺 ,分析了烧结过程中的烧结温度、时间对烧结密度、微观组织和热导率的影响规律。研究表明 ,随着烧结温度的升高 ,材料密度不断增加 ,但当温度大于 14 5 0℃时 ,密度反而下降。材料经 14 5 0℃ 3h烧结达到了 98%的相对密度 ,热导率为 15 8W /(m·K)。  相似文献   

11.
为了提高钼铌合金的性能,本文采用不同球磨时间球磨的铌粉和高纯细粒度钼粉进行混合,通过冷等静压(CIP)在200 MPa下进行压制后,用中频炉和真空炉在1950℃温度下烧结5 h。结果表明,铌粉球磨时间在25 h时,烧结密度最高,烧结断口孔隙最少,且在真空炉烧结后,氧含量显著降低。  相似文献   

12.
稀土元素镱活性极高,极易氧化,且蒸汽压很高,在钨铜、钨银合金的研究基础上对钨镱假合金进行了研究,通过前期对钨粉粒度、实验工艺等的优化后,采用冷等静压(200 MPa压力)压制烧结制备钨骨架,1000℃氢气还原预烧结、1800℃真空烧结,氩气气氛保护熔渗稀土镱制备钨镱合金,综合其密度,硬度等基本实验数据,分析了钨镱合金的组织.结果表明:制备出了高致密度的钨镱合金,钨镱合金密度为15.30 g·cm<'-3>,相对密度达到99.5%以上,硬度值低于HRB82,所制备的钨骨架其通道分布均匀,经熔渗法制备的钨镱合金中镱元素的分布呈现大面分布均匀,高倍状态下出现局部富集的情况,其富集情况与钨骨架通道分布情况相符合.所制备的钨镱合金能够满足特殊要求应用于配套材料.  相似文献   

13.
采用放电等离子烧结(SPS)设备制备了W-Re高比重合金,烧结温度为1800℃,烧结压力为40MPa,保温时间为5min。对SPS烧结的W-Re合金试样进行了密度、硬度等性能测试。采用金相显微镜观察试样的金相组织、晶粒大小。结果表明:采用SPS烧结,可以在较低的温度下实现W-Re合金的致密化,并能有效控制晶粒长大,提高材料的硬度。  相似文献   

14.
本文通过对具有不同烧结密度的热压SiC—TiC复相陶瓷在氮气氛中进行热等静压后处理,从理论上(依据热力学数据)分析了闭合SiC—TiC复相陶瓷开孔孔隙的可能性,并用实验予以证实;同时,还研究和讨论了热等静压后处理工艺对陶瓷烧结体某些物理和力学性能(密度、强度和断裂韧性)以及氧化行为的影响。实验结果表明:SiC和TiC在高的氮气压力和温度下,可以分别氮化成Si_3N_4和TiN;对于预烧结相对密度约为95%的热压SiC—TiC复相陶瓷,在200MPa氮气压力下于1850℃氮化1小时后,室温强度由345MPa提高到686MPa,断裂韧性高达7.9MPa·m~(1/2),其抗氧化性能也有明显改善。  相似文献   

15.
以气雾化(gas atomization,GA)粉末为原料,采用热等静压(hot isostatic pressing,HIP)致密化烧结工艺制备Fe18Ni23Co25Cr21Mo8WNbC2铁钴镍基高温合金,研究热等静压温度对致密化Fe18Ni23Co25Cr21Mo8WNbC2粉末高温合金金相组织、力学性能和断口形貌的影响。结果表明:热等静压技术制备的高温合金致密化程度很高,烧结体由(Fe,Ni)固溶体相和弥散分布的M6C碳化物强化相组成;热等静压温度为950~1050 ℃时,烧结体的密度、力学性能随着热等静压烧结温度的提高而提高;当热等静压温度达到1100 ℃时,致密化烧结体晶粒组织明显长大,其力学拉伸性能降低;致密化烧结体的室温拉伸断口以穿晶断裂为主,局部区域晶粒被拉伸开裂,650 ℃高温断口为穿晶断裂和沿晶断裂的混合形貌,基体相存在沿应力方向被拉长的韧窝。  相似文献   

16.
采用冷等静压、真空烧结的方法制备TC4钛合金,研究了不同固溶温度和时效温度对TC4钛合金组织及性能的影响。结果表明:冷等静压、真空烧结的方法制备的TC4粉末钛合金的抗拉强度可达852MPa,伸长率为16%;随着固溶温度的提高,钛合金的抗拉强度提高,伸长率降低,而随着时效温度的提高,抗拉强度降低,伸长率提高。在960℃×30min固溶、470℃×4h时效时,合金的抗拉强度达到1078MPa,伸长率达到11%。  相似文献   

17.
以平均粒径约为30 μm,空心球壁厚约1.8 μm的空心球结构WC-6Co复合粉为原料,利用放电等离子烧结(SPS)技术制得不同烧结温度、保温时间、烧结压力工艺下的WC-6Co硬质合金.采用扫描电镜、钴磁仪等检测手段对合金的组织与性能进行表征分析.结果表明:随着烧结温度的升高,合金的致密度和硬度升高;在实验范围内合金密度与硬度随着保温时间的延长而增加,再趋于稳定;烧结压力对合金密度、硬度等性能影响不大.综合考虑合金性能,较好烧结工艺为:温度1 250 ℃、保温时间5 min、烧结压力50 MPa.该烧结工艺制得的合金的密度达14.69 g/cm3、断裂韧性达12.23 MPa·m1/2,其组织也很细很均匀.   相似文献   

18.
以4605母合金粉末为原料,采用注射成形工艺,在1 320~1 380℃烧结温度下制备4605低合金钢,并采用3种不同工艺进行热处理,研究烧结温度及热处理工艺对合金钢显微组织与硬度、抗拉强度等性能的影响。结果表明:4605低合金钢的烧结密度随烧结温度升高而增大;其显微组织由板条状马氏体和多边形铁素体组成;合金钢的硬度和抗拉强度均随烧结温度升高而升高,在1 380℃下烧结的低合金钢,致密度达96.38%,抗拉强度为613 MPa;塑性随烧结温度升高先上升后下降,在1 360℃烧结的合金钢伸长率最大,达13.5%。烧结温度为1 380℃的合金钢,经过800℃保温0.5 h,油冷,然后在200℃保温2 h的热处理后,得到马氏体组织,抗拉强度和硬度最高,分别为708 MPa和78.8 HRA;烧结温度为1 360℃的合金钢,在800℃保温1 h,油冷,然后在600℃保温2 h的热处理后,得到回火索氏体组织,伸长率最大,达到18.76%。  相似文献   

19.
本文利用热压烧结技术制备了性能优良的SiC-5%(体积分数)Al基复合材料.工艺参数主要包括烧结温度、轴向压力、高温保压时间等,对这些参数和材料性能之间的关系进行了探讨.为了研究不同的烧结温度、压力和高温保压时间对材料致密度的影响,设计了一个三因素、四水平的正交试验.结果表明,SiC-5%Al基复合材料的最佳工艺参数为烧结温度600℃、高温压力70 MPa、保压时间7 min.  相似文献   

20.
以等离子电弧法制备的铟-锡氧化物(indium-tin oxide,ITO)纳米粉末为原料,采用冷等静压-烧结工艺制备ITO靶材,用排水法和涡流导电仪分别对ITO靶材的致密度和电阻率进行测量,研究烧结温度、升温速率、烧结时间以及气氛压力对靶材致密度和电阻率的影响。结果表明,在烧结温度为1 550℃、升温速率为500℃/h、烧结时间8 h、氧气气氛压力为0.02 MPa条件下制备的ITO靶材致密度和电阻率分别为99.54%和1.829×10-4?·cm,能够满足高端光伏、液晶显示屏(LCD)等领域对ITO靶材致密度和电阻率的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号