共查询到17条相似文献,搜索用时 78 毫秒
1.
关于模糊C-均值(FCM)聚类算法的改进 总被引:3,自引:0,他引:3
针对模糊C-均值(FCM)聚类算法的容易收敛于局部极值的不足,提出了一种改进的模糊FCM聚类算法,此新算法在聚类中心选取和优化过程中进行了充分的考虑,是一种用于确定最佳聚类数的聚类算法,并且利用了分阶段思想,结合动态直接聚类算法和标准聚类算法,来尽量避免模糊C-均值(FCM)聚类算法的不足。新算法与传统(FCM)聚类算法方法相比,提高了算法的寻优能力,并且迭代次数更少,在准确度上也有较大的提高,具有很好的实际应用价值。 相似文献
2.
对噪声图像提出了一种改进的模糊聚类分割算法。因为模糊C均值聚类(FCM)算法具有对噪声数据敏感的缺点,该算法通过提升意义更趋明晰的模糊隶属度来改变模糊聚类中的目标函数,即通过在标准的FCM算法中使用到类的Voronoi cell的距离来取代到类的原型的欧氏距离,从而增强了聚类结果的鲁棒性。实验结果表明,改进的算法较之于FCM对于噪声图像的分割有更好的鲁棒性。 相似文献
3.
一种改进的模糊聚类图像分割算法研究与仿真 总被引:3,自引:0,他引:3
针对相似图像分割过程中,输入像素数据在转换空间上存在的不连贯和幅度变化特征差异很小,像素的隶属关系很难准确界定,导致分割阀值设定过程出现较大衰减,分割误差较大的问题,提出一种改进的模糊聚类图像分割算法.分析了传统的模糊C-均值聚类图像分割算法的弊端,对像素模糊划分矩阵和聚类中心进行推导,将迭代过程中像素数据集对聚类隶属的可能性和不确定性关系融入分割目标函数中,依据可能隶属度和不确定隶属度建立改进分割准则函数,同时对像素聚类进行更新,实现图像分割.仿真结果验证了所提算法的有效性,结果表明,改进后的方法在分割检测过程中,图像误差明显减小. 相似文献
4.
基于改进FCM聚类算法的火灾图像分割 总被引:1,自引:0,他引:1
研究火灾识别问题,火灾图像分割是火灾特征提取和识别的前提,其分割效果直接影响火灾识别的准确率.针对现有分割方法中存在的经验阈值难以确定和因彩色信息丢失导致分割不准确等问题,为了准确识别火灾图像,提出一种改进的FCM聚类的火灾图像分割方法.方法选用符合人眼视觉特性的HSI颜色空间,根据数据分布特点确定色度分量H和亮度分量Ⅰ的初始聚类中心,分别在直方图特征空间进行模糊聚类处理,并利用像素的空间信息对模糊隶属度函数做了改进,最后在由两分量的模糊隶属度组成的二维特征空间上进行火灾图像分割.实验结果表明,算法可排除高亮区域的干扰,准确分割出火焰区域,为后续的火灾识别提供重要依据. 相似文献
5.
针对非充分数据集及噪声对聚类分析的干扰,基于模糊C均值(FCM)框架下的聚类技术,即一般化的增强模糊划分聚类算法(GIFP-FCM),探讨具有迁移学习能力的聚类方法--融入迁移学习机制的GIFP-FCM算法(T-GIFP-FCM)。该算法通过有效利用历史相关场景(域)总结得到的知识来指导当前场景(域)中信息不足时的聚类任务,从而提高聚类效果。通过在模拟数据集及真实数据集上的仿真实验,结果显示文中算法较之传统算法在处理信息不足任务时具有更佳的性能。 相似文献
6.
模糊C均值(FCM)聚类算法用于图像分割具有简单直观、易于实现的特点,但是存在计算量大、运算速度慢、抗噪能力差等问题,为解决上述问题提出了一种改进的快速FCM算法(FFCM),方法将空间信息融入到标准FCM算法中,将图像从像素空间映射到其厌度直方图特征空间,实现了快速聚类,然后在快速聚类的基础上,充分利用像素的邻域特性,依据最大隶属度原则,划分图像像素的类别归属,对隶属度函数做一定改进.实验结果表明,既能快速有效地分割图像,又具有较好地抗噪能力. 相似文献
7.
8.
利用模糊聚类算法对图像进行分割是一种比较经典的方法,但是标准的FCM算法并没有考虑像素的空间信息对聚类结果的影响。利用S函数将空间信息转为模糊聚类算法的目标函数的权值,从而使目标函数更合理。实验结果表明,改进算法较标准的FCM算法具有更好的分割效果。 相似文献
9.
《计算机科学与探索》2016,(2):220-229
模糊C均值(fuzzy C-means,FCM)聚类算法是一种常用的基于目标函数最小化的聚类算法。目前已经提出了相当数量的聚类算法是对模糊C均值聚类算法的改进,例如AFCM算法、GK算法等。对最近发表的基于Bregman距离的模糊聚类算法进行了改进,通过在FCM模糊聚类框架中引入Total-Bregman距离提升了聚类算法的聚类性能。同时对基于Total-Bregman距离的模糊聚类算法的收敛性质进行了理论分析。实验部分对来自UCI数据库的几个数据集进行了聚类,证明了算法的有效性和收敛性。 相似文献
10.
BTS(Best Two Step)聚类算法是结合层次聚类和划分聚类算法的两步聚类算法。层次聚类算法类与类之间不可以对象交换,很容易造成聚类质量不高的结果。而划分聚类对于初始值的设定以及异常噪声数据都很敏感,所以我们研究提出了BTS算法,实验证明BTS算法可达到高质量的聚类效果。 相似文献
11.
WU Li 《数字社区&智能家居》2008,(9)
针对相对复杂图像目标对象的提取问题,本文先运用模糊C均值聚类算法(FCM)对图像进行模糊分割。再根据模糊分类后的图像,本文设计了一种图像目标提取方法。实验表明,这种方法能还原模糊分类后的图像目标,并使背景部分替换成其他颜色,从而实现图像目标的提取。 相似文献
12.
极限学习机(Extreme learning machine, ELM)作为一种新技术具有在回归和分类中良好的泛化性能。局部空间信息的模糊C均值算法(Weighted fuzzy local information C-means, WFLICM)用邻域像素点的空间信息标记中心点的影响因子,增强了模糊C均值聚类算法的去噪声能力。基于极限学习机理论,对WFLICM进行改进优化,提出了基于ELM的局部空间信息的模糊C均值聚类图像分割算法(New kernel weighted fuzzy local information C-means based on ELM,ELM-NKWFLICM)。该方法基于ELM特征映射技术,将原始数据通过ELM特征映射技术映射到高维ELM隐空间中,再用改进的新核局部空间信息的模糊C均值聚类图像分割算法(New kernel weighted fuzzy local information C-means,NKWFLICM)进行聚类。 实验结果表明 ELM-NKWFLICM算法具有比WFLICM算法更强的去噪声能力,且很好地保留了原图像的细节,算法在处理复杂非线性数据时更高效, 同时克服了模糊聚类算法对模糊指数的敏感性问题。 相似文献
13.
刘小芳 《计算机工程与应用》2006,42(15):20-22,55
模糊C-均值(FCM)算法是一种非监督的模式识别方法。由于该算法具有对数据集进行等划分的趋势,影响其聚类精度。利用数据点的密度大小作为权值,借助数据本身的分布特性,提出了一种点密度加权模糊C-均值算法。该方法不仅在一定程度上克服了FCM算法的缺陷,而且具有良好的收敛性。当以聚类已知的少量数据点作为监督信息指导聚类,聚类效果进一步改善。并用聚类有效性函数对算法的聚类有效性进行了评价,从而为算法的聚类性能提供了理论依据。 相似文献
14.
医学图像分割是医学图像分析的关键步骤,经典的模糊C-均值聚类算法(FCM)是常用方法,但其依赖于初始聚类中心的选择,通常存在局部收敛的缺陷。通过与遗传算法(GA)结合而成的遗传模糊C-均值聚类算法(GFCMA),采用RGB颜色空间,能够得到全局最优解,并在此基础上实现了医学彩色图像分割和特定目标提取,取得良好分割效果。 相似文献
15.
16.
模糊C-均值聚类法在医学图像分析中的应用 总被引:15,自引:0,他引:15
主要针对医学图像提出了基于模糊均值聚类的改进算法和应用.该方法分为3步,第1步是像素的模糊化,通过模糊期望值构造冗余图像;第2步是通过冗余图像和原始图像进行聚类分割;第3步是三维显示.由于利用冗余图像增加了每个像素的特征量,该算法增强了聚类分割的精确度.同时,还给出了应用自行开发的三维医学图像处理与分析系统对多种医学图像(包括CT、螺旋CT和MRI)的处理结果.由于对薄骨和关节接合处骨骼的较好识别,使其重建后的三维模型可以清晰地再现解剖结构,取得了较好的效果. 相似文献
17.
基于模糊C-均值聚类算法的入侵检测 总被引:2,自引:0,他引:2
聚类分析是一种有效的异常入侵检测方法,可用以在网络数据集中区分正常流量和异常流量.文中采用模糊C-均值聚类算法对网络流量样本集进行划分,从中区分正常流量和异常流量,并针对入侵检测问题的特性提出了新的相似性度量方法.最后,利用KDD99数据集进行实验,证明该算法能够有效地发现异常流量. 相似文献