首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
为了实现小型化、高功率、高效率连续2μm激光输出,采用中心波长792nm激光二极管(LD)抽运双掺杂Tm,Ho∶YLF晶体,将晶体封装在装有350mL液氮的杜瓦装置中,使其工作在77K温度条件下。光纤耦合激光二极管出纤功率14.8W,数值孔径0.3,芯径400μm。激光二极管端面抽运Tm,Ho∶YLF激光器,产生2.05μm线偏振连续激光输出,最大功率5.2W。由于Tm3+离子能级间的交叉弛豫效应导致的高抽运量子效率,实验获得的光-光转换效率为35%,斜度效率达到40%。采用双端面抽运结构,两个激光二极管注入功率29.6W时,Tm,Ho∶YLF激光器输出功率达10.2W,相当于光-光转换效率33%,斜度效率36%。  相似文献   

2.
报道了一种激光二极管(LD)双末端抽运Tm:YLF激光器,在1.9 μm处获得了连续波(CW)输出。1.9 μm激光可用于抽运Ho晶体获得2 μm激光。在理论上,分析了掺Tm3+激光器的运转机制和能量转换损耗,计算出Tm:YLF激光器在理论上的斜率效率达到50%。在实验上,抽运源使用工作波长为792 nm的光纤耦合激光二极管,抽运光均分为两束双端抽运Tm:YLF晶体,两块晶体串接在折叠腔内。Tm:YLF 晶体的掺杂原子数分数为4%, 尺寸为3 mm×3 mm×12 mm。测量了输出镜在不同透射率情况下激光器的输出激光波长,当输出镜透射率T=26%时,在1.9μm处获得20.1 W的连续波激光输出,相应的抽运功率为75 W,阈值抽运功率为9 W,斜率效率为34%,光-光转换效率为27%。  相似文献   

3.
2μmTm,Ho∶YLF激光抽运ZnGeP_2光参量振荡技术研究   总被引:1,自引:0,他引:1  
ZnGeP2晶体具有宽的透明范围(0.7~12μm),较大的非线性系数(d36=75pm/V),最高损伤阈值能量密 度为10J/cm2,较高的热导率(0.18W/(m·K)),因而非常适合作为高功率中红外光参量振荡器(OPO)晶体。理 论上分析了ZnGeP2光参量振荡器相位匹配特性,实现3~5μm连续调谐范围输出的Ⅰ类相位匹配角在52.5~ 55.2°之间。实验上,以15W光纤耦合激光二极管(LD)抽运的2.05μm高重复频率声光调QTm,Ho∶YLF激光 器作为抽运源,其最大平均功率4W,脉冲宽度小于40ns,脉冲重复频率100Hz~10kHz可调。为降低准三能级 系统激光器阈值,提高激光脉冲能量抽取效率,Tm,Ho∶YLF晶体采用液氮制冷方式,工作在77K温度条件下。 非线性频率转换晶体ZnGeP2长15mm,55.7°切割,光参量振荡器谐振腔为平平腔,腔长约20mm。在3.6W的抽 运功率下,脉冲重复频率10kHz,实现了4.1μm附近中红外激光输出,参量光脉冲宽度为20ns,平均输出功率为 0.7W,光 光转换效率为20%,抽运光阈值功率为0.65W。  相似文献   

4.
2 μm Tm,Ho:YLF激光抽运ZnGeP2光参量振荡技术研究   总被引:4,自引:5,他引:4  
ZnGeP2晶体具有宽的透明范围(0.7~12 μm),较大的非线性系数(d36=75 pm/V),最高损伤阈值能量密度为10 J/em2,较高的热导率(0.18 W/(m·K)),因而非常适合作为高功率中红外光参量振荡器(OPO)晶体.理论上分析了ZnGeP2光参量振荡器相位匹配特性,实现3~5 μm连续调谐范围输出的Ⅰ类相位匹配角在52.5~55.2°之间.实验上,以15 W光纤耦合激光二极管(LD)抽运的2.05 μm高重复频率声光调Q Tm,Ho:YLF激光器作为抽运源,其最大平均功率4 W,脉冲宽度小于40 ns,脉冲重复频率100 Hz~10 kHz可调.为降低准三能级系统激光器阈值,提高激光脉冲能量抽取效率,Tm,Ho:YLF晶体采用液氮制冷方式,工作在77 K温度条件下.非线性频率转换晶体ZnGeP2长15 mm,55.7°切割,光参量振荡器谐振腔为平平腔,腔长约20 mm.在3.6 W的抽运功率下,脉冲重复频率10 kHz,实现了4.1 μm附近中红外激光输出,参量光脉冲宽度为20 ns,平均输出功率为0.7 W,光-光转换效率为20%,抽运光阈值功率为0.65 W.  相似文献   

5.
低温下运行的光纤耦合激光二极管抽运 Tm,Ho:YLF激光器   总被引:2,自引:2,他引:0  
为了实现小型化、高功率、高效率连续2μm激光输出,采用中心波长792nm激光二极管(LD)抽运双掺杂Tm.Ho:YLF晶体,将晶体封装在装有350mL液氮的杜瓦装置中.使其工作在77K温度条件下。光纤耦合激光二极管出纤功率14.8W.数值孔径0.3,芯径400μm。激光二极管端面抽运Tm,Ho:YLF激光器,产生2.05μm线偏振连续激光输出,最大功率5.2W。由于Tm^3-离子能级间的交叉弛豫效应导致的高抽运量子效率,实验获得的光-光转换效率为35%,斜度效率达到40%。采用双端面抽运结构.两个激光二极管注入功率29.6W时,Tm,Ho:YLF激光器输出功率达10.2W,相当于光光转换效率33%,斜度效率36%。  相似文献   

6.
激光二极管双端抽运Tm:YAP激光器   总被引:4,自引:1,他引:3  
简要分析了掺铥铝酸钇(Tm∶YAP)晶体的能级结构及吸收光谱特性,报道了一种室温条件下的激光二极管(LD)双端面抽运Tm∶YAP激光器。激光器输出的中心波长为1996 nm,2μm连续激光输出功率为40.7 W,光-光转换效率为30.4%,斜率效率为41.1%。经过声光(AO)调制后获得重复频率为10 kHz的脉冲激光输出,输出功率为34.6 W,激光脉冲宽度为92.08 ns,光-光转换效率为25.9%,斜率效率为32.9%。光束发散角x方向为11.6 mrad,y方向为12.2 mrad。  相似文献   

7.
研究了激光二极管(LD)端面抽运的主动调Q内腔式Nd∶YAG/GdVO4拉曼激光器的激光特性,测量了不同抽运功率和脉冲重复频率条件下的平均输出功率和脉冲宽度.当注入的抽运功率为[7.44 W,脉冲重复频率为20 kHz时获得的1174.5 nm拉曼光的最大平均输出功率为1.3 W,对应的光-光转换效率为17.4%;当注入抽运功率为6.8 W,脉冲重复频率为[15 kHz时获得的1174.5 nm拉曼光的最大单脉冲能量为74.4 μJ.与Nd∶GdVO4自拉曼激光器进行实验比较和分析,实验结果表明主动调Q内腔式Nd∶YAG/GdVO4拉曼激光器可以获得比Nd∶GdVO4自拉曼激光器更高的平均输出功率和转换效率.  相似文献   

8.
激光二极管端面抽运Tm:YAG激光器   总被引:2,自引:2,他引:2  
研究了输出波长为2.018μm的激光二极管(LD)抽运Tm∶YAG激光器。通过准三能级系统的速率方程,分析了激光系统的抽运阈值和斜率效率。同时,利用ABCD矩阵分析了平凹腔和双凹腔的腔型稳定条件和模式匹配情况。实验时采用785 nm的光纤耦合半导体激光器为抽运源,当采用平凹直腔,Tm∶YAG晶体为5℃时,获得了4.04 W的连续激光输出,激光器斜率效率为35.4%,光-光转换效率为26.4%。实验比较了不同晶体温度下Tm∶YAG激光器的阈值、功率和效率。实验结果与理论分析基本吻合。此外,还研究了激光器腔型对激光输出功率和效率的影响。  相似文献   

9.
设计并研究了高功率和高效率2044 nm c轴切割Tm,Ho:YAP连续激光器。利用中心波长为794.75 nm激光二极管双端面抽运c轴切割Tm,Ho:YAP晶体,晶体尺寸为4 mm×4 mm×7 mm,其中Tm3+和Ho3+掺杂原子数分数分别为5%和0.3%,晶体采用液氮制冷。激光晶体的两个端面均镀有792~796 nm和1900~2100 nm的高透膜。c轴切割Tm,Ho:YAP激光器的谐振腔由一个平凹镜和一个平镜构成平凹腔,谐振腔的物理腔长为150mm。通过改变激光二极管的温度变换抽运波长,实验获得了10.5 W的连续输出功率和37.4%的光光转换效率。  相似文献   

10.
激光二极管抽运的高效高重复频率Nd∶YAG陶瓷激光器   总被引:1,自引:0,他引:1  
研制了激光二极管(LD)抽运的高效高重复频率声光调QNd∶YAG陶瓷微型激光器件。激光器采用激光二极管纵向同轴抽运Nd∶YAG陶瓷得到1064nm近红外激光输出,采用熔融石英作声光介质,声光调Q重复频率1Hz~115kHz可调。使用2W的激光二极管抽运,获得脉冲宽度16.4ns,峰值功率2.46kW,单脉冲能量40.5μJ的稳定运转。在重复频率110kHz时获得495mW的平均功率,总光光转换效率达24.75%。研究了重复频率及抽运功率对声光调Q脉冲激光器性能的影响,并对实验结果进行了相应的分析讨论,在理论上加以合理的解释。  相似文献   

11.
室温下高效率连续波激光二极管端面抽运Tm:YAP激光器   总被引:2,自引:1,他引:1  
报道了一种室温下高效率运行的激光二极管(LD)端面抽运Tm:YAP连续波激光器.抽运源使用波长为795 nm的光纤耦合二极管激光器,Tm:YAP晶体c轴切割,掺杂原子数分数为3%,尺寸为3 mm×3 mm×7 mm.当输出镜透过率T为10%时,获得8.12 W的1.94 μm连续波激光输出,相对应的抽运功率为26.2 W,阈值抽运功率为4.67 W,斜率效率为52.1%,光一光转换效率为31.0%.使用光栅单色仪测得激光器输出中心波长为1938.2nm,谱线半峰全宽约为2.9 nm.  相似文献   

12.
实现了一种单端光纤耦合的高重复频率、窄脉冲、窄线宽及高效率的主动声光调Q全光纤脉冲光纤激光器。该光纤激光器基于光纤光栅与平面镜组合而成的线性法布里-珀罗(F-P)腔结构,采用激光二极管与(2+1)×1抽运耦合器形成后向抽运,并利用单端光纤耦合声光调制器(AOM)实现了全光纤化结构的脉冲掺镱双包层光纤激光器。调Q声光开关工作在一级方向,反向输出调Q脉冲,重复频率20~100kHz可调。在重复频率50kHz、抽运功率5.7W下系统获得了输出激光功率2.64W、单脉冲能量528μJ、脉宽56ns、峰值功率943W的稳定的高效率、窄线宽的窄脉冲,中心波长在1080nm左右,线宽为0.06nm,光-光转换效率高达46%。  相似文献   

13.
报道了单脉冲能量大于10μJ的腔倒空锁模皮秒激光器。通过实验完成了光纤耦合激光二极管端面抽运Nd:YVO4晶体、半导体可饱和吸收镜(SESAM)锁模的大功率皮秒激光振荡器后,在锁模腔内插入BBO电光晶体,实现重复频率1Hz~10kHz连续可调的电光腔倒空锁模运转。在抽运功率17.9 W时,获得了单脉冲能量12.5μJ、重复频率10kHz、脉冲宽度24.7ps的激光输出。  相似文献   

14.
报道了单脉冲能量大于10μJ的腔倒空锁模皮秒激光器。通过实验完成了光纤耦合激光二极管端面抽运Nd:YVO4晶体、半导体可饱和吸收镜(SESAM)锁模的大功率皮秒激光振荡器后,在锁模腔内插入BBO电光晶体,实现重复频率1Hz~10kHz连续可调的电光腔倒空锁模运转。在抽运功率17.9 W时,获得了单脉冲能量12.5μJ、重复频率10kHz、脉冲宽度24.7ps的激光输出。  相似文献   

15.
LD端面抽运1.5 W单频稳频绿光激光器   总被引:10,自引:7,他引:3  
光纤耦合激光二极管 (LD)抽运Nd∶YVO4激光晶体 ,采用KTP晶体腔内倍频 ,在输入抽运功率为 11W时 ,获得 1 5W稳定单频绿光输出 ,光 光转换效率 13 6 %。通过边带锁频系统将基频激光频率锁定在F P共焦参考腔的中心频率上 ,输出的倍频光频率稳定性优于 6 2 0kHz,功率稳定性优于± 1 5 %。  相似文献   

16.
高重复频率、窄脉宽全固态光纤放大器种子源   总被引:3,自引:0,他引:3  
高重复频率、窄脉宽的全固态激光器种子源级联光纤放大器是获得高功率脉冲激光输出的有效手段.短上能态寿命的Nd:YVO4晶体在连续抽运、高重复频率Q开关工作时容易得到接近连续性能的平均输出功率.理论分析了声光(AO)调Q器件中影响输出能量和脉宽大小的主要因素,优化配置了腔型参数.利用激光二极管(LD)光纤耦合模块端面抽运Nd:YVO4晶体,实现了声-光调Q重复频率100 kHz以上,脉宽20 ns以下,波长1064 nm的激光输出.在抽运功率5.7 W时,得到了脉宽15.3 ns,重复频率150 kHz的种子光输出,在级联单级光纤放大器后,得到了20 W的输出.  相似文献   

17.
采用结构简单、紧凑的直线腔设计,用单壁碳纳米管(SWCNT)为饱和吸收体,实现了激光二极管(LD)抽运Tm∶YAP晶体的2μm波段被动调Q和调Q锁模(QML)脉冲激光运转。当腔长为30mm时,实现了稳定的2μm被动调Q激光输出,抽运功率为8.64 W时,最大平均输出功率为507mW,最高重复频率26.91kHz,最窄脉宽262ns,相应的单脉冲能量18.8μJ。腔长增加到80mm时,得到调Q锁模激光运转,最大平均输出功率和调Q包络脉冲的最高重复频率分别为387mW和34.61kHz,调Q包络下锁模脉冲的重复频率为1.87GHz。  相似文献   

18.
报道了激光二极管(LD ) 抽运的Nd ∶YLF 激光器, 采用平凹腔结构, 分别用两片 Cr4 + ∶YAG可饱和吸收晶体,实现了被动调Q,输出激光波长为1053nm。采用厚度为0. 5mm小信号透过率为90%的Cr4 + ∶YAG,在泵浦功率最大为17W时,输出脉冲宽度为60. 6ns,平均功率为1. 5W,重复频率为9. 5kHz,单脉冲能量为157. 9mJ;采用厚度为0. 55mm小信号透过率为95%的Cr4 + ∶YAG,在泵浦功率最大为17W时,输出脉冲宽度为68. 6ns,平均功率为1. 35W,重复频率为14kHz,单脉冲能量为96. 4mJ。  相似文献   

19.
激光二极管抽运的高光束质量的Yb   总被引:2,自引:0,他引:2  
李磊  杨苏辉  孙文峰  赵长明 《中国激光》2004,31(11):1285-1288
演示了激光二极管(LD)端面抽运Yb∶YAG薄片固体激光器,抽运源是美国相干公司(COHERENT)光纤耦合输出半导体激光器,光纤输出芯径为800 μm,在940 nm处最大输出功率为13.56 W,由于光纤输出芯径较大,不利于抽运光和振荡光的模式匹配,为了得到较小的抽运光斑,采用了焦距比为30∶12的耦合透镜组压缩入射到晶体端面的抽运光光腰半径,晶体为原子掺杂浓度8 at.-%,几何尺寸为φ7 mm×1.6 mm国产Yb∶YAG晶体,整个实验装置采用温差电致冷(TEC)和循环水冷却方式,实验中得到了3.06 W的连续激光输出,激光器的斜率效率为33.1%,测得M2因子在x和y方向分别为1.54和1.73,具有良好的光束质量。  相似文献   

20.
报道了一种由激光二极管抽运的Nd∶YAG/Nd∶YVO4共轴双晶体的Cr∶YAG被动调Q激光器,利用这种方式相比于传统的Nd∶YAG/Cr∶YAG激光器提高了输出激光的偏振比,在非线性频率变换过程中得到了更高的转换效率,当抽运功率为10 W时获得了2.8 W的被动调Q 1064 nm激光输出,偏振比大于80∶1,激光重复频率为15 k Hz,脉冲宽度为7 ns,采用LBO作为非线性频率变换晶体,最终获得了223 m W的355 nm紫外激光输出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号