首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 328 毫秒
1.
冷凝燃气锅炉由于充分回收了烟气中的显热和水蒸气的凝结潜热,使燃气锅炉的热效率大幅提高,而冷凝热的回收关键在于冷凝率,其与烟气的成分、排烟温度以及空气系数有关。从理论和实验上研究了排烟温度对冷凝率的影响,并对燃气锅炉进行了正反平衡测试。研究结果表明,天然气锅炉烟气中水蒸气的理论含量在15%~18.6%之间,随过量空气系数的增加而减少,冷凝率随排烟温度的降低而逐渐增加,同温度下低的过量空气系数有高的冷凝率。理论上全部回收冷凝热时,锅炉效率可以提升的极限值为10.74%,加装了翅片管式冷凝式二级节能器后,运行监测锅炉热效率提升5%。  相似文献   

2.
针对烟气余热不能充分回收的问题,对能够充分回收烟气余热的新型热电联供系统中的烟气冷凝热回收设备进行试验研究,重点研究该工况下光滑管烟气冷凝设备的传热性能.研究结果表明,在该试验工况下,干式、冷凝段传热系数可达60 W/(m~2·K),冷凝段传热系数为90~100 W/(m~2·K),冷凝段传热系数约为干式段传热系数的1.5~1.7倍,并整理了该工况下的传热准则关系式,为该系统型式的推广应用提供设计与运行依据.  相似文献   

3.
以某冷凝式锅炉为例,论述冷凝式锅炉在工业中的应用和冷凝式换热器的种类及优缺点,着重研究天然气的组成及烟气分析计算,计算其烟气组成与热回收总量,对烟气余热的项目提出一定的指导及建议。  相似文献   

4.
为实现燃煤电厂烟气水回收,研究低温湿烟气中水蒸气的冷凝回收特性,在某燃煤机组湿法脱硫系统出口搭建烟气冷凝水回收试验平台。采用理论计算确定了脱硫系统出口烟气状态,分析了饱和烟气的冷凝过程,通过现场试验研究了冷却水相对质量流量对换热的影响,以及烟气温降对冷凝水回收的影响,考察了烟气冷凝器的水捕集性能。结果表明:烟气温降与烟气水回收率和冷凝水回收率线性相关;在本试验系统中,烟气温降为10 K时,烟气水回收率约为35%,冷凝水回收率接近80%;冷却水相对质量流量达到3后,总传热系数保持稳定,此时传热系数为烟气侧纯对流传热系数的9倍左右;烟气冷凝器可以实现56%的冷凝水回收率,尚有44%的冷凝雾滴需要分离器回收。  相似文献   

5.
锅炉烟气余热回收利用是重要的节能措施,为分析其余热回收效果。本文利用气气热交换器对低温烟气进行余热回收,并对节能效果和投入成本进行了探究。结果表明,对于排烟温度较低,且锅炉无补水要求的情况,显热回收方式比冷凝热回收方式更适合。另外,低温烟气热回收装置的换热面积需求值与烟气比之间存在极大值,在设计中应避开该最大值对应的烟气比。通过分析比较,气气换热器对烟气余热回收的方法是可行的,且具有良好的节能效果。  相似文献   

6.
天然气锅炉改造为冷凝式锅炉的经济性评价   总被引:8,自引:2,他引:8  
燃气供热锅炉排烟温度较高,带走了大量的热能。如果加装冷凝式换热器回收烟气的显热及潜热,可以大大提高锅炉效率,但是加装换热器必然增加设备成本。本文通过对冷凝式换热器设计计算,计算出不同排烟温度下的热能回收设备投资回收期,从经济上分析了天然气锅炉改造为冷凝式锅炉的可行性,并给出了锅炉最佳排烟温度。  相似文献   

7.
进一步提高高温空气燃烧余热回收率   总被引:3,自引:0,他引:3  
目前,高温空气燃烧的排烟温度在200℃左右,为了进一步提高余热回收率,对降低排烟温度到50℃的可能性作了分析及实验,理论计算表明,降低排烟温度后,余热回收率可以提高6%~10%,由于天然气的烟气中含有较多的水蒸气,利用其冷凝热为进一步提高余热回收效率提供了更大的空间,烟气中的污染物可被冷凝的水分吸收,减少污染物排放。计算天然气烟气燃烧产物露点后,建议在蓄热体低温部分采取防止低温腐蚀的措施。  相似文献   

8.
刘长征  沈胜强 《节能》2012,31(4):7-10
介绍天然气冷凝式余热回收原理,分析天然气燃烧产物的组成,对排烟热损失、节能量、冷凝率进行了计算和分析。结果显示,烟气中可回收的蒸气潜热达到烟气低位热值的11.2%。排烟热损失随排烟温度的升高而增加,当排烟温度低于露点温度时,排烟热损失随排烟温度的升高急剧增加,水蒸气冷凝率随排烟温度的升高而降低。此外,对这种方法降低烟气中NOX排放的环保特性也进行了探讨。  相似文献   

9.
通过对天然气燃烧的烟气特性分析,其烟气中的冷凝热约为3 800 k J,约占燃料热值的10%,不论是从节能减排的角度,还是用户的角度去看,冷凝热的回收都具有很高的价值,将大幅度提高锅炉的热效率,节约能源降低成本。通过对传统的燃气蒸汽锅炉和燃气热水锅炉的改造实例,对燃气锅炉冷凝技术进行探讨。  相似文献   

10.
吸收式热泵回收烟气冷凝热的实验研究   总被引:2,自引:0,他引:2  
基于清华大学超低能耗示范楼热电冷联供平台,对利用吸收式热泵回收天然气烟气冷凝热进行了实验研究,分析了余热回收系统的开启、变工况和关机动态响应过程.实验表明,烟气余热回收系统的开启过程较长,应尽量使内燃机与热泵的容量匹配,缩短开机时间;内燃机发电功率对系统供热功率和供热温度影响较大,对冷凝热回收功率、冷冻水温度和制热COP影响较小;系统供热温度对热泵性能影响较大;应选择合适的关机模式,以保证系统安全、缩短关机时间.  相似文献   

11.
The exit flue gas temperature of a conventional gas fired boiler is usually high and a great amount of heat energy is lost to the environment. If both sensible heat and latent heat can be recovered by adding a condensing heat exchanger, the efficiency of the boiler can be increased by as much as 10%. In this paper, based on combustion and heat transfer calculations, the recoverable heat and the efficiency improvement potential of different heat recovery schemes at various exit flue gas temperatures are presented by performing design calculations. The payback period method has been used to analyze the feasibility of retrofitting a conventional gas fired boiler into a condensing boiler in a heating system in detail. The results show that the most economical exit flue gas temperature is 40–55 °C when a conventional natural gas fired boiler is retrofitted into a condensing boiler simply by adding a condensing heat exchanger. It is feasible to use the return water of a heating system as the cooling medium of the condensing heat exchanger because the return temperature varies with the ambient temperature and is lower than the dew point of the water vapor in the flue gas in most periods of a heating season in some regions, which has been verified by retrofitted case.  相似文献   

12.
在回收燃气锅炉烟气余热时,采用特殊管型强化传热以吸收烟气中大量的水蒸气所携带的显热和潜热,可以降低锅炉的排烟温度,提高锅炉的热效率。对滴型管和圆管烟气侧传热特性进行数值计算,通过对计算结果的分析比较,探讨了影响传热的因素,得出滴型管的传热特性优于圆管的结论,为特殊管型在冷凝换热器中的应用提供参考。  相似文献   

13.
An experimental system investigating condensation heat transfer of wet flue gas was set up, and the heat transfer performance of vapor‐gas mixture with vapor condensation was discussed. The experimental results of laminar flow in a plastic longitudinal spiral plate heat exchanger were obtained and are in good agreement with the modified classical film model. It is shown that the plastic air preheater can avoid acid corrosion in the low‐temperature field for the boiler using fuel containing sulfur and recover latent heat of the water vapor of the wet flue gas. Also some SO2 was scrubbed during the vapor condensing process in the heat exchanger. © 2001 Scripta Technica, Heat Trans Asian Res, 30(7): 571–580, 2001  相似文献   

14.
Condensing boiler applications in the process industry   总被引:3,自引:0,他引:3  
Major challenging issues such as climate change, energy prices and fuel security have focussed the attention of process industries on their energy efficiency and opportunities for improvement. The main objective of this research study was to investigate technologies needed to exploit the large amount of low grade heat available from a flue gas condensing system through industrial condensing boilers. The technology and application of industrial condensing boilers in various heating systems were extensively reviewed. As the condensers require site-specific engineering design, a case study was carried out to investigate the feasibility (technically and economically) of applying condensing boilers in a large scale district heating system (40 MW). The study showed that by recovering the latent heat of water vapour in the flue gas through condensing boilers, the whole heating system could achieve significantly higher efficiency levels than conventional boilers. In addition to waste heat recovery, condensing boilers can also be optimised for emission abatement, especially for particle removal. Two technical barriers for the condensing boiler application are corrosion and return water temperatures. Highly corrosion-resistant material is required for condensing boiler manufacture. The thermal design of a “case study” single pass shell-and-tube condensing heat exchanger/condenser showed that a considerable amount of thermal resistance was on the shell-side. Based on the case study calculations, approximately 4900 m2 of total heat transfer area was required, if stainless steel was used as a construction material. If the heat transfer area was made of carbon steel, then polypropylene could be used as the corrosion-resistant coating material outside the tubes. The addition of polypropylene coating increased the tube wall thermal resistance, hence the required heat transfer area was approximately 5800 m2. Net Present Value (NPV) calculations showed that the choice of a carbon steel condenser ensured cash return in a relatively shorter period of time (i.e. 2 years) when compared to a stainless steel condenser (i.e. 5-7 years). Moreover, the NPV for the stainless steel was more sensitive to the change of the interest rate.  相似文献   

15.
柳鹏飞  林琳  尹洪超 《节能》2012,31(5):67-70
冷凝式燃气锅炉是节能和环保型锅炉,通过增加尾部受热面对烟气进行冷凝换热,吸收烟气中水蒸气的汽化潜热,降低排烟温度。对冷凝式锅炉烟气冷凝方案不同的换热设备进行相应的分析讨论,并采用搪瓷省煤器对烟气进行冷凝换热,锅炉的热效率明显提高。  相似文献   

16.
This paper has proposed an improved liquefied natural gas (LNG) fuelled combined cycle power plant with a waste heat recovery and utilization system. The proposed combined cycle, which provides power outputs and thermal energy, consists of the gas/steam combined cycle, the subsystem utilizing the latent heat of spent steam from the steam turbine to vaporize LNG, the subsystem that recovers both the sensible heat and the latent heat of water vapour in the exhaust gas from the heat recovery steam generator (HRSG) by installing a condensing heat exchanger, and the HRSG waste heat utilization subsystem. The conventional combined cycle and the proposed combined cycle are modelled, considering mass, energy and exergy balances for every component and both energy and exergy analyses are conducted. Parametric analyses are performed for the proposed combined cycle to evaluate the effects of several factors, such as the gas turbine inlet temperature (TIT), the condenser pressure, the pinch point temperature difference of the condensing heat exchanger and the fuel gas heating temperature on the performance of the proposed combined cycle through simulation calculations. The results show that the net electrical efficiency and the exergy efficiency of the proposed combined cycle can be increased by 1.6 and 2.84% than those of the conventional combined cycle, respectively. The heat recovery per kg of flue gas is equal to 86.27 kJ s?1. One MW of electric power for operating sea water pumps can be saved. The net electrical efficiency and the heat recovery ratio increase as the condenser pressure decreases. The higher heat recovery from the HRSG exit flue gas is achieved at higher gas TIT and at lower pinch point temperature of the condensing heat exchanger. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
This paper is based on the proposal of a new waste heat recovery (WHR) system, which can be utilized to heat the boiler return water, boiler supply air, and building heating air. The system is the combination of an indirect contact condensing unit (IDCCU), a mechanical compression heat pump, and two air preheaters. The system is modeled on the basis of mass and energy balance and then thermodynamically analyzed. Improved performance results were obtained in the form of an increase in the boiler's energy efficiency of about 10.47%, with 4.87% increase in exergy efficiency. The coefficient of performance (COP) of the heat pump was increased from 1.23 to 1.45 by the addition of an air heater in the conventional heat pump. The exergy destruction in each component is calculated. Sensitivity analysis was performed to check the influence of different operating parameters on the performance of the WHR system and boiler. It can be observed from the results that for a specific refrigerant temperature and a calculated amount of mass, flow rate can maximize the condensation efficiency of IDCCU by decreasing the flue gas temperature, while the use of the air heater can further reduce the flue gas temperature, and a stream of hot air can be utilized for space heating. A comparison is made with the other system on a performance basis. The results shows a clear difference in efficiencies and profit earned.  相似文献   

18.
Hydrogen-enriched natural gas (HENG) has attracted widespread attention due to its lower pollutant emissions and industrial decarbonization in the past decades. HENG combustion boosts the water content in the flue gas, which is highly favorable for condensing boilers to recover additional latent heat. The energy saving and thermal performance of a condensing boiler burning HENG were evaluated at a constant heat load of 2.8 MW in this study. The variations in combustion products and boiler efficiency were investigated based on the material balance and energy conservation. The heat transfer calculations were employed to evaluate the thermal performance of boiler heating surfaces. The energy recovery performance of the condenser was assessed via a thermal design method. Results show that H2 enrichment enhances the radiation intensity of the flame due to the incremental triatomic gases with higher emissivity in the furnace. The heat absorption ratio increases with H2 enrichment in the radiative heating surface, while it shows a reverse tendency in the convective heating surface. The condensing boiler efficiency based on lower heating value increases from 101.83% to 110.60%, the total heat transfer rate of the condenser increases from 2.77 × 105 W to 4.61 × 105 W, and the total area required decreases from 46.45 m2 to 42.16 m2, as the H2 enriches from 0 to 100% under the exhaust flue gas temperature of 318 K. Although the amount of recoverable heat in the exhaust flue gas increases considerably after H2 blending, the original condenser with natural gas as the designed fuel could meet the requirements of the heat recovery for HENG without increasing the extra heating surface. When the H2 fraction is enriched from 0 to 100%, CO2 emission intensity drops from 6.05 × 10−8 kg J−1 to 0. This work may offer some theoretical references for the application and generalization of HENG condensing boilers.  相似文献   

19.
Consteel电炉余热锅炉的热平衡计算方法研究   总被引:2,自引:0,他引:2  
张培亭 《节能技术》2005,23(1):25-27
针对Consteel电炉余热锅炉烟气入口参数不稳定的特点,得到了余热锅炉的各项热损失、锅炉效率、有效利用热量和蒸发量的计算公式。对65t Consteel电炉炼钢设备余热锅炉进行了热平衡计算,计算表明,锅炉的排烟热损失随烟气入口温度的降低而增加,而锅炉效率、有效利用热量和蒸发量随烟气入口温度的降低而降低,锅炉的平均蒸发量为23.1t/h。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号