首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mucin type O-glycans with core 2 branches are distinct from nonbranched O-glycans, and the amount of core 2 branched O-glycans changes dramatically during T cell differentiation. This oligosaccharide is synthesized only when core 2 beta-1, 6-N-acetylglucosaminyltransferase (C2GnT) is present, and the expression of this glycosyltransferase is highly regulated. To understand how O-glycan synthesis is regulated by the orderly appearance of glycosyltransferases that form core 2 branched O-glycans, the subcellular localization of C2GnT was determined by using antibodies generated that are specific to C2GnT. The studies using confocal light microscopy demonstrated that C2GnT was localized mainly in cis to medial-cisternae of the Golgi. We then converted C2GnT to a trans-Golgi enzyme by replacing its Golgi retention signal with that of alpha-2,6-sialyltransferase, which resides in trans-Golgi. Chinese hamster ovary cells expressing wild type C2GnT and the chimeric C2GnT were then subjected to oligosaccharide analysis. The results obtained clearly indicate that the conversion of C2GnT into a trans-Golgi enzyme resulted in a substantial decrease of core 2 branched oligosaccharides. These results, taken together, strongly suggest that the predominance of core 2 branched oligosaccharides in those cells expressing C2GnT is due to the fact that C2GnT is located earlier in the Golgi than alpha-2,3-sialyltransferase that competes with C2GnT for the common substrate. Furthermore, alteration of Golgi localization renders the chimeric C2GnT much less efficient in synthesizing core 2 branched oligosaccharides, indicating the critical role of orderly subcellular localization of glycosyltransferases.  相似文献   

2.
We have addressed the question of whether or not Golgi fragmentation, as exemplified by that occurring during drug-induced microtubule depolymerization, is accompanied by the separation of Golgi subcompartments one from another. Scattering kinetics of Golgi subcompartments during microtubule disassembly and reassembly following reversible nocodazole exposure was inferred from multimarker analysis of protein distribution. Stably expressed alpha-2,6-sialyltransferase and N-acetylglucosaminyltransferase-I (NAGT-I), both C-terminally tagged with the myc epitope, provided markers for the trans-Golgi/trans-Golgi network (TGN) and medial-Golgi, respectively, in Vero cells. Using immunogold labeling, the chimeric proteins were polarized within the Golgi stack. Total cellular distributions of recombinant proteins were assessed by immunofluorescence (anti-myc monoclonal antibody) with respect to the endogenous protein, beta-1,4-galactosyltransferase (GalT, trans-Golgi/TGN, polyclonal antibody). ERGIC-53 served as a marker for the intermediate compartment). In HeLa cells, distribution of endogenous GalT was compared with transfected rat alpha-mannosidase II (medial-Golgi, polyclonal antibody). After a 1-h nocodazole treatment, Vero alpha-2,6-sialyltransferase and GalT were found in scattered cytoplasmic patches that increased in number over time. Initially these structures were often negative for NAGT-I, but over a two- to threefold slower time course, NAGT-I colocalized with alpha-2,6-sialyltransferase and GalT. Scattered Golgi elements were located in proximity to ERGIC-53-positive structures. Similar trans-first scattering kinetics was seen with the HeLa GalT/alpha-mannosidase II pairing. Following nocodazole removal, all cisternal markers accumulated at the same rate in a juxtanuclear Golgi. Accumulation of cisternal proteins in scattered Golgi elements was not blocked by microinjected GTPgammaS at a concentration sufficient to inhibit secretory processes. Redistribution of Golgi proteins from endoplasmic reticulum to scattered structures following brefeldin A removal in the presence of nocodazole was not blocked by GTPgammaS. We conclude that Golgi subcompartments can separate one from the other. We discuss how direct trafficking of Golgi proteins from the TGN/trans-Golgi to endoplasmic reticulum may explain the observed trans-first scattering of Golgi transferases in response to microtubule depolymerization.  相似文献   

3.
The plant Golgi apparatus   总被引:1,自引:0,他引:1  
The plant Golgi apparatus has an important role in protein glycosylation and sorting, but is also a major biosynthetic organelle that synthesises large quantities of cell wall polysaccharides. This is reflected in the organisation of the Golgi apparatus as numerous individual stacks of cisternae that are dispersed through the cell. Each stack is polarised: the shape of the cisternae and the staining of the membranes change in a cis to trans direction, and the cisternae on the trans side contain more polysaccharides. Numerous glycosyltransferases are required for the synthesis of the complex cell wall polysaccharides. Microscopy and biochemical fractionation studies suggest that these enzymes are compartmentalised within the stack. Although there is no obvious cis Golgi network, the trans-most cisterna or trans Golgi network often buds clathrin-coated and sometimes smooth dense vesicles as well. Here, vacuolar proteins are sorted from the secreted proteins and polysaccharides. This review highlights unique aspects of the organisation and function of the plant Golgi apparatus. Fundamentally similar processes probably underlie Golgi organisation in all organisms, and consideration of the plant Golgi specialisations can therefore be generally informative, as well as being of central importance to plant cell biology.  相似文献   

4.
The alpha2,6-sialyltransferase (ST) is a Golgi glycosyltransferase that adds sialic acid residues to glycoprotein N-linked oligosaccharides. Here we show that two forms of alpha2,6-sialyltransferase are expressed by the liver and are encoded by two different RNAs that differ by a single nucleotide. The ST tyr possesses a Tyr at amino acid 123, whereas the ST cys possesses a Cys at this position. The ST tyr is more catalytically active than the ST cys; however, both are functional when introduced into tissue culture cells. The proteolytic processing and turnover of the ST tyr and ST cys proteins differ dramatically. The ST cys is retained intact in COS-1 cells, whereas the ST tyr is rapidly cleaved and secreted. Analysis of the N-linked oligosaccharides of these proteins demonstrates that both proteins enter the late Golgi. However, differences in ST tyr and ST cys proteolytic processing may be related to differences in their localization, because ST tyr but not ST cys is expressed at low levels on the cell surface. The possibility that the ST tyr is cleaved in a post-Golgi compartment is supported by the observation that a 20 degrees C temperature block, which stops protein transport in the trans Golgi network, blocks both cleavage and secretion of the ST tyr.  相似文献   

5.
The beta-galactoside alpha-2,6-sialyltransferase is a trans Golgi/trans Golgi network glycosyltransferase which adds sialic acid residues to Asn-linked oligosaccharides of glycoproteins. Previous results suggested that the sialyltransferase stem and signal anchor including flanking sequences may be two independent Golgi retention regions. However, other experiments demonstrated that the sequence of the signal anchor itself was not important. To investigate whether the sialyltransferase signal anchor was necessary and sufficient for Golgi retention, several mutant and chimeric proteins were expressed and localized in Cos-1 and Chinese hamster ovary cells. We found that the signal anchor and flanking sequences were able to retain the sialyltransferase catalytic domain in the Golgi. However, efficient Golgi retention was still observed when the signal anchor was altered or entirely replaced in either the presence or absence of most of the luminal stem region. Chimeric proteins consisting of the sialyltransferase cytoplasmic tail and signal anchor fused to the extracellular domains of two different cell surface proteins demonstrated poor Golgi retention. A significant increase in the Golgi retention of one of these chimeras was observed when two lysines were placed next to the signal anchor on the luminal side. Taken together these results suggest that the sialyltransferase signal anchor is not necessary or sufficient for Golgi retention, rather, appropriately spaced cytoplasmic and luminal flanking sequences are the important elements of the sialyltransferase Golgi retention region.  相似文献   

6.
Golgi apparatus of both plant and animal cells are characterized by an extensive system of approximately 30 nm diameter peripheral tubules. The total surface area of the tubules and associated fenestrae is thought to be approximately equivalent to that of the flattened portions of cisternae. The tubules may extend for considerable distances from the stacks. The tubules are continuous with the peripheral edges of the stacked cisternae, but the way they interconnect differs across the stack. In plant cells, for example, tubules associated with the near-cis and mid cisternae often begin to anastomose close to the peripheral edges of the stacked cisternae, whereas the tubules of the trans cisternae are less likely to anastomose and are more likely to be directly continuous with the peripheral edges of the stacked cisternae. Additionally, the tubules may blend gradually into fenestrae that surround some of the stack cisternae. Because of the large surface area occupied by tubules and fenestrae, it is reasonable to suppose that these components of the Golgi apparatus play a significant role in Golgi apparatus function. Tubules clearly interconnect closely adjacent stacks of the Golgi apparatus and may represent a communication channel to synchronize stack function within the cell. A feasible hypothesis is that tubules may be a potentially static component of the Golgi apparatus in contrast to the stacked cisternal plates which may turn over continuously. The coated buds associated with tubules may represent the means whereby adjacent Golgi apparatus stacks exchange carbohydrate-processing enzymes or where resident Golgi apparatus proteins are introduced into and out of the stack during membrane flow differentiation. The limited gradation of tubules from cis to medial to trans offers additional possibilities for functional specialization of Golgi apparatus in keeping with the hypothesis that tubules are repositories of resident Golgi apparatus proteins protected from turnover during the flow differentiation of the flattened saccules of the Golgi apparatus stack.  相似文献   

7.
Mnt1p is an alpha 1.2-mannosyltransferase which resides in an early compartment of the Saccharomyces cerevisiae Golgi apparatus. We have shown that the signal-anchor region is sufficient, and the transmembrane domain necessary, for its normal Golgi localization. This is similar to the transmembrane domain-mediated retention of mammalian glycosyltransferases, and distinct from the tail-mediated recycling retention of certain mammalian and yeast trans-Golgi proteins. To examine the mechanism involved in transmembrane domain-mediated retention, we have isolated six classes of mutants which fail to retain Mnt1p-reporter fusions in the early Golgi. These mutants all show additional phenotypes which are consistent with alterations in Golgi function. We have called the mutant classes 'gem', for Golgi enzyme maintenance. GEM3 is identical to the previously cloned gene ANP1, and homologous to VAN1 and MNN9. Together, these define a new class of proteins involved in the organization and functioning of the secretory pathway. Interestingly, Anp1p is localized to the endoplasmic reticulum (ER), implying that some function of the ER is required to maintain a functional Golgi apparatus.  相似文献   

8.
Plants store amino acids for longer periods in the form of specific storage proteins. These are deposited in seeds, in root and shoot tubers, in the wood and bark parenchyma of trees and in other vegetative organs. Storage proteins are protected against uncontrolled premature degradation by several mechanisms. The major one is to deposit the storage proteins into specialized membrane-bounded storage organelles, called protein bodies (PB). In the endosperm cells of maize and rice prolamins are sequestered into PBs which are derived from the endoplasmic reticulum (ER). Globulins, the typical storage proteins of dicotyledonous plants, and prolamins of some cereals are transported from the ER through the Golgi apparatus and then into protein storage vacuoles (PSV) which later become transformed into PBs. Sorting and targeting of storage proteins begins during their biosynthesis on membrane-bound polysomes where an N-terminal signal peptide mediates their segregation into the lumen of the ER. After cleavage of the signal peptide, the polypeptides are glycosylated and folded with the aid of chaperones. While still in the ER, disulfide bridges are formed which stabilize the structure and several polypeptides are joined to form an oligomer which has the proper conformation to be either deposited in ER-derived PB or to be further transferred to the PSV. At the trans-Golgi cisternae transport vesicles are sequestered which carry the storage proteins to the PSV. Several storage proteins are also processed after arriving in the PSVs in order to generate a conformation that is capable of final deposition. Some storage protein precursors have short N- or C-terminal targeting sequences which are detached after arrival in the PSV. Others have been shown to have internal sequence regions which could act as targeting information. In some cases positive targeting information is known to mediate sorting into the PSV whereas in other cases aggregation and membrane association seem to be major sorting mechanisms.  相似文献   

9.
Targeting and retention of Golgi membrane proteins   总被引:2,自引:0,他引:2  
Recent cloning of genes encoding membrane proteins of the Golgi complex has allowed investigation of protein targeting to this organelle. Targeting signals have been identified in three glycosyltransferases, a viral envelope protein and several proteins of the trans-Golgi network. Interestingly, the targeting signals for membrane proteins of the Golgi stacks seem to be contained in transmembrane domains. Information in the cytoplasmic tails is required for the targeting of trans-Golgi network proteins. Mechanisms involving both retention and retrieval have been invoked.  相似文献   

10.
A new displacement electrophoresis technique, termed free-solution isotachophoresis (FS-ITP) was used for the analysis of sphingolipid metabolism in Golgi subfractions. The discontinuous electrolyte system enables tissue-derived membrane vesicles to be separated and purified due to their polarity patterns in a mobility gradient. In this study total Golgi apparatus obtained from rat liver by discontinuous density gradient centrifugation was subfractionated by preparative FS-ITP, yielding enzymatically active cis-, medial-, and trans-Golgi subfractions. These membrane vesicles were assayed by the following established enzyme marker activities: NADH cytochrome c reductase (cis-Golgi), NADP phosphatase (medial-Golgi), and thiamine pyrophosphatase (trans-Golgi). The activity of phosphatidylcholine:ceramide phosphocholine transferase, a sphingomyelin synthesizing enzyme, is attributed to the cis- and medial-Golgi-derived subfractions. Analysis of Golgi lipids revealed a decline in membranous ceramide along the cis- to trans-Golgi polarity axis. Furthermore, significant amounts of newly synthesized sphingomyelin and diacylglycerol are transferred from the medial/cis- to the trans-Golgi compartment. The FS-ITP system is well suited for micropreparative experimental applications, as demonstrated by studies on phosphatidylcholine:ceramide phosphocholine transferase activity in Golgi membrane vesicles of rat liver obtained by FS-ITP.  相似文献   

11.
Large-scale enzymatic synthesis of oligosaccharides, which contain terminal N-acetyl-neuraminic acid residues requires large amounts of the sialyltransferase and the corresponding sugar-nucleotide synthetase, which is required for the synthesis of the sugar-nucleotide donor, CMP-Neu5Ac. Using genes cloned from Neisseria meningitidis, we constructed a fusion protein that has both CMP-Neu5Ac synthetase and alpha-2,3-sialyltransferase activities. The fusion protein was produced in high yields (over 1200 U/L, measured using an alpha-2,3-sialyltransferase assay) in Escherichia coli and functionally pure enzyme could be obtained using a simple protocol. In small-scale enzymatic syntheses, the fusion protein could sialylate various oligosaccharide acceptors (branched and linear) with N-acetyl-neuraminic acid as well as N-glycolyl- and N-propionyl-neuraminic acid in high conversion yield. The fusion protein was also used to produce alpha-2,3-sialyllactose at the 100 g scale using a sugar nucleotide cycle reaction, starting from lactose, sialic acid, phosphoenolpyruvate, and catalytic amounts of ATP and CMP.  相似文献   

12.
A monoclonal antibody, H-145, the antigen of which is a glycoprotein with a molecular weight of 116 kDa, inhibits the fusion of quail skeletal myoblasts transformed with the temperature-sensitive mutant of Rous sarcoma virus (ts-RSV) (QM-RSV cells). Its antigen shows a unique distribution pattern during myogenic differentiation, and is required continuously for the inhibition as reported previously. The H-145 antigen is expressed from as early as the presumptive myoblast stage, and its expression increases during differentiation. In presumptive myoblasts, H145 antigen is mainly accumulated in the Golgi apparatus. However, on transfer to conditions for differentiation, the antigen accumulated in the Golgi apparatus begins to become dispersed in the cytoplasm, and is gradually transported to the cell surface during differentiation, suggesting that transportation of H-145 antigen to the cell surface is required for myoblast fusion. To examine this possibility, we studied the effect of bafilomycin A1, which blocks transport of intracellular proteins between trans-Golgi cisternae and the cell surface. Treatment of QM-RSV cells with bafilomycin A1 inhibited myoblast fusion even at 41 degrees C, the temperature for myogenic differentiation. Under this condition, the antigen did not diffuse to the cell surface, but remained localized in the Golgi apparatus, as on culture at 35.5 degrees C, the non-differentiation condition. These results suggest that quantitative expression of H-145 antigen on the cell surface is a prerequisite for myoblast fusion upon differentiation of QM-RSV cells.  相似文献   

13.
Newly synthesized proteins destined for delivery to the cell surface are inserted cotranslationally into the endoplasmic reticulum (ER) and, after their correct folding, are transported out of the ER. During their transport to the cell surface, cargo proteins pass through the various cisternae of the Golgi apparatus and, in the trans-most cisternae of the stack, are sorted into constitutive secretory vesicles that fuse with the plasma membrane. Simultaneously with anterograde protein transport, retrograde protein transport occurs within the Golgi complex as well as from the Golgi back to the ER. Vesicular transport within the early secretory pathway is mediated by two types of non-clathrin coated vesicles: COPI- and COPII-coated vesicles. The formation of these carrier vesicles depends on the recruitment of cytosolic coat proteins that are thought to act as a mechanical device to shape a flattened donor membrane into a spherical vesicle. A general molecular machinery that mediates targeting and fusion of carrier vesicles has been identified as well. Beside a general overview of the various coat structures known today, we will discuss issues specifically related to the biogenesis of COPI-coated vesicles: (1) a possible role of phospholipase D in the formation of COPI-coated vesicles; (2) a functional role of a novel family of transmembrane proteins, the p24 family, in the initiation of COPI assembly; and (3) the direction COPI-coated vesicles may take within the early secretory pathway. Moreover, we will consider two alternative mechanisms of protein transport through the Golgi stack: vesicular transport versus cisternal maturation.  相似文献   

14.
Molecular cloning and expression of GalNAc alpha 2,6-sialyltransferase   总被引:1,自引:0,他引:1  
cDNA clones encoding GalNAc alpha 2,6-sialyltransferase (EC 2.4.99.3) have been isolated from chick embryo cDNA libraries using sequence information obtained from the conserved amino acid sequence of the previously cloned enzymes. The cDNA sequence included an open reading frame coding for 566 amino acids, and the deduced amino acid sequence showed 12% identity with that of Gal beta 1,4GlcNAc alpha 2,6-sialyltransferase from chick embryo. The primary structure of this enzyme suggested a putative domain structure, like that in other glycosyltransferases, consisting of a short NH2-terminal cytoplasmic domain, a signal-membrane anchor domain, a proteolytically sensitive stem region, and a large COOH-terminal active domain. The identity of this enzyme was confirmed by the construction of a recombinant sialyltransferase in which the NH2-terminal part (232 amino acid residues) was replaced with the immunoglobulin signal sequence. The expression of this recombinant in COS-7 cells resulted in secretion of a catalytically active and soluble form of the enzyme into the medium. The expressed enzyme exhibited activity toward only asialomucin and (asialo)fetuin, no significant activity being detected toward the other glycoprotein and glycolipid substrates tested. 14C-Sialylated glycols obtained from asialomucin re-sialylated with this enzyme were identical to NeuAc alpha 2,6-GalNAc-ol and GlcNAc beta 1,3(NeuAc alpha 2,6) GalNAc-ol. Synthetic GalNAc-SerNAc also served as an acceptor for alpha 2,6-sialylation. These results clearly showed that the expressed enzyme is GalNAc alpha 2,6-sialyltransferase.  相似文献   

15.
BCMA is a human gene expressed preferentially in mature B lymphocytes as a 1.2 kb mRNA, which encodes a 184 amino acid peptide (BCMAp). The study of BCMA mRNA expression, using human malignant B cell lines characteristic of different stages of B lymphocyte differentiation, demonstrated that the BCMA mRNA is absent in the pro-B lymphocyte stage. It is expressed faintly at the pre-B cell stage and its expression increases with B lymphocyte maturation. Polyclonal antibodies were used to show, by cellular fractionation and immunoprecipitation, that BCMAp is a non-glycosylated integral membrane protein. Furthermore, BCMAp inserts, in vitro, into canine microsomes, as a type I integral membrane protein. Cell surface labeling showed that BCMAp is not expressed in the plasma membrane of mature B lymphocytes. Immunofluorescence studies revealed that BCMAp lies in a cap-like structure near the nucleus, that was identified as the Golgi apparatus by co-localization of BCMAp with CTR433, a marker of the medial cisternae of the Golgi apparatus. Confocal scanning laser microscopy of U266 plasma cells labeled with markers of various Golgi apparatus subcompartments strongly suggests that BCMAp is located in the cis part of the Golgi apparatus. Thus, BCMAp is the first Golgi resident protein with a tissue specificity and whose expression is linked to the stage of differentiation of B lymphocytes. The location of BCMAp in the Golgi apparatus and its high expression in plasmocytes (secreting large amounts of Ig) suggest that BCMAp is implicated in the intracellular traffic of Ig.  相似文献   

16.
We have used isolated rat liver Golgi membranes to reconstitute the synthesis of sulfated glycosaminoglycans (GAGs) onto the membrane-permeable, external acceptor xyloside. Biosynthetic labeling of GAGs with [35S]sulfate in vitro is shown to have an absolute requirement for ATP and cytosolic proteins and is inhibited by dismantling the Golgi apparatus with okadaic acid or under mitotic conditions suggesting that inter-compartmental transport between Golgi cisternae is a prerequisite for the successful completion of the initiation, polymerization, and sulfation of GAGs. Accordingly, we show that in vitro synthesis of 35S-GAGs utilizes the same machinery employed in Golgi transport events in terms of vesicle budding (ADP-ribosylation factor and coatomer), docking (Rabs), targeting (SNAREs), and fusion (N-ethylmaleimide-sensitive factor). This provides compelling evidence that GAGs synthesis is linked to Golgi membrane traffic and suggests that it can be used as a complementation-independent method to study membrane transport in Golgi preparations from any source. We have applied this system to show that intra-Golgi traffic requires the function of the Golgi target-SNARE, syntaxin 5.  相似文献   

17.
Numerous proteins have been identified in yeast and mammalian cells which are involved in trafficking between the endoplasmic reticulum and the Golgi apparatus. A great number of partial cDNA sequences now available from the two major plant model species, Arabidopsis thaliana and Oryza sativa, makes it possible to identify putative plant homologues of known genes/proteins from non-plant species. The authors used this approach to screen the database of Expressed Sequence Tags (dbEST) in order to detect plant homologues of proteins involved in membrane transport between ER and Golgi. Availability of these partial sequences will facilitate the screening of cDNA and genomic libraries otherwise performed using heterologous probes derived from animal and yeast genes. As the plant Golgi complex differs in many respects from its mammalian and yeast counterparts, the dbEST clones found can be directly used for various functional assays (immunoprecipitation, two-hybrid analysis, transgenic plants etc.) to test the exact roles of the encoded proteins and identify their functional partners, some of which may be specific for plants.  相似文献   

18.
Derivatives of chitin oligosaccharides have been shown to play a role in plant organogenesis at nanomolar concentrations. Here we present data which indicate that chitin oligosaccharides are important for embryogenesis in vertebrates. We characterize chitin oligosaccharides synthesized in vitro by zebrafish and carp embryos in the late gastrulation stage by incorporation of radiolabeled N-acetyl-D-[U14C]glucosamine and by HPLC in combination with enzymatic conversion using the Bradyrhizobium NodZ alpha-1, 6-fucosyltransferase and chitinases. A rapid and sensitive bioassay for chitin oligosaccharides was also used employing suspension-cultured plant cells of Catharanthus roseus. We show that chitin oligosaccharide synthase activity is apparent only during late gastrulation and can be inhibited by antiserum raised against the Xenopus DG42 protein. The DG42 protein, a glycosyltransferase, is transiently expressed between midblastula and neurulation in Xenopus and zebrafish embryogenesis. Microinjection of the DG42 antiserum or the Bradyrhizobium NodZ enzyme in fertilized eggs of zebrafish led to severe defects in trunk and tail development.  相似文献   

19.
We have characterized the maturation of Shaker K+ channel protein and the cellular site of assembly of pore-forming alpha and cytoplasmic beta subunits in a transfected mammalian cell line. Shaker protein is made as a partially glycosylated, immature precursor that is converted to a fully glycosylated, mature product. Shaker protein did not mature when transport from the endoplasmic reticulum (ER) to the Golgi apparatus was blocked. Consistent with this finding, only the immature form was sensitive to digestion with endoglycosidase H. These results indicate that the immature protein is core-glycosylated in the ER, whereas the oligosaccharides of the mature protein have been further processed in the Golgi compartment. After inhibiting ER-to-Golgi transport, the oligomeric state of Shaker subunits was assessed by cross-linking in intact cells or by solubilization and sucrose gradient sedimentation. The results indicate that Shaker subunits assemble with each other in the ER. When co-expressed, the Kvbeta2 subunit also associated with Shaker in the ER. Assembly with the beta2 subunit did not increase the rate or extent of Shaker protein maturation. Our results indicate that the biogenesis of Shaker K+ channels in vivo involves core glycosylation and subunit assembly in the ER, followed by efficient transfer to the Golgi apparatus where the oligosaccharides are modified.  相似文献   

20.
Tubules constitute an integral part of the Golgi apparatus and have been shown to form a complex and dynamic network at its trans side. We have studied in detail structural features of the trans Golgi network and its relationship with the cisternal stack in thin sections of Lowicryl K4M embedded human absorptive enterocytes by immunolectron microscopy. Immunoreactive sites for alpha1,3 N-acetylgalactosaminyltransferase and blood group A substance were detectable throughout the cisternal stack and the entire trans Golgi network. Furthermore, the entire trans Golgi network was reactive for CMPase activity. Evidence for two kinds of tubules at the trans side of the Golgi apparatus was found: tubules that laterally connect adjacent and distant cisternal stacks, and others extending from central and lateral portions of trans cisternae to form the complex and extensive trans Golgi network. Trans cisternae showed often the peeling-off phenomenon and were continuous with the trans Golgi network. Both, trans cisternae and tubules of the trans Golgi network exhibited regionally buds and vesicles with a lace-like, non clathrin coat, previously reported by others in NRK cells, which contained glycoproteins with terminal N-acetylgalactosamine residues. These buds and vesicle are therefore involved in constitutive exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号