首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oxides of the type, Ba3-xSrxZnNb2O9 (0 ≤x ≤3), were synthesized by the solid state route. Oxides calcined at 1000°C show single cubic phase for all the compositions. The cubic lattice parameter (a) decreases with increase in Sr concentration from 4.0938(2) forx = 0 to 4.0067(2) forx = 3. Scanning electron micrographs show maximum grain size for thex = 1 composition (∼ 2 μm) at 1200°C. Disks sintered at 1200°C show dielectric constant variation between 28 and 40 (at 500 kHz) for different values of x with the maximum dielectric constant atx = 1.  相似文献   

2.
xBaTiO3 + (1 − x)Ni0.93Co0.02Cu0.05Fe2O4 (x = 0.5, 0.6, 0.7, 0.8) composites with ferroelectric–ferromagnetic characteristics were synthesized by the ceramic sintering technique. The presence of constituent phases in the composites was confirmed by X-ray diffraction studies. The average grain size was calculated by using a scanning electron micrograph. The dielectric characteristics were studied in the 100 kHz to 15 MHz. The dielectric constant changed higher with ferroelectric content increasing; and it was constant in this frequency range. The relation of dielectric constant with temperature was researched at 1, 10, 100 kHz. The Curie temperature would be higher with frequency increasing. The hysteresis behavior was studied to understand the magnetic properties such as saturation magnetization (M s). The composites were a typical soft magnetic character with low coercive force. Both the ferroelectric and ferromagnetic phases preserve their basic properties in the bulk composite, thus these composites are good candidates as magnetoelectric materials.  相似文献   

3.
An investigation was made of samples having a chemical formula of Ni1−x Zn x Fe2O4, where x = 0.3, 0.5 and 0.7. The samples were prepared by the reaction combustion synthesis method and sintered at 1,200 °C/2 h in a static air atmosphere. The influence of the Zn concentration on the relative density, microstructure and magnetic properties of the samples was studied. X-ray diffraction, scanning electron microscopy and magnetic hysteresis loop tracer were used to analyze the compositions. The samples were found to have a spinel cubic structure, sintered density of 92.9%–98.8% of the corresponding X-ray density, homogeneous microstructure with grain size ranging from 1.37 to 3.36 μm, maximum flux density of 0.16–0.35 T, field coercivity ranging from 17 to 168 A/m, and loss hysteresis of 1.5–105 W/kg. Increased grain growth, with fine pores inside the grains, was found to occur as the Zn concentration increased. The overall findings are discussed here in light of the existing understanding of these systems.  相似文献   

4.
The thermoelectric power and d.c electrical conductivity of x V2O5⋅40CaO⋅(60−x)P2O5 (10 ≤ x ≤ 30) glasses were measured. The Seebeck coefficient (Q) varied from +88 μ V K−1 to −93 μV K−1 as a function of V2O5 mol%. Glasses with 10 and 15 mol% V2O5 exhibited p-type conduction and glasses with 25 and 30 mol% V2O5 exhibited n-type conduction. The majority charge carrier reversal occurred at x = 20 mol% V2O5. The variation of Q was interpreted in terms of the variation in vanadium ion ratio (V5 +/V4 +). d.c electrical conduction in x V2O5⋅40CaO⋅(60−x)P2O5 (10 ≤ x ≤ 30) glasses was studied in the temperature range of 150 to 480 K. All the glass compositions exhibited a cross over from small polaron hopping (SPH) to variable range hopping (VRH) conduction mechanism. Mott parameter analysis of the low temperature data gave values for the density of states at Fermi level N (EF) between 1.7 × 1026 and 3.9 × 1026 m−3 eV−1 at 230 K and hopping distance for VRH (RVRH) between 3.8 × 10−9m to 3.4 × 10−9 m. The disorder energy was found to vary between 0.02 and 0.03 eV. N (EF) and RVRH exhibit an interesting composition dependence.  相似文献   

5.
CaCu3Ti4O12 (CCTO) was synthesized and sintered by microwave processing at 2·45 GHz, 1·1 kW. The optimum calcination temperature using microwave heating was determined to be 950°C for 20 min to obtain cubic CCTO powders. The microwave processed powders were sintered to 94% density at 1000°C/60 min. The microstructural studies carried out on these ceramics revealed the grain size to be in the range 1–7 μm. The dielectric constants for the microwave sintered (1000°C/60 min) ceramics were found to vary from 11000–7700 in the 100 Hz–00 kHz frequency range. Interestingly the dielectric loss had lower values than those sintered by conventional sintering routes and decreases with increase in frequency.  相似文献   

6.
Bismuth-layered compound Ca0.15Sr1.85Bi4−xNdxTi5O18 (CSBNT, x = 0–0.25) ferroelectric ceramics samples were prepared by solid-state reaction method. The effects of Nd3+ doping on their ferroelectric and dielectric properties were investigated. The remnant polarization Pr of CSBNT ceramics increases at beginning then decreases with increasing of Nd3+ doping level, and a maximum Pr value of 9.6 μC/cm2 at x = 0.05 was detected with a coercive field Ec = 80.2 kV/cm. Nd3+ dopant not only decreases the Curie temperature linearly, but also the dielectric constant (εr) and dielectric loss tangent (tan δ). The magnitudes of εr and tan δ at the frequency of 100 kHz are estimated to be 164 and 0.0083 at room temperature, respectively.  相似文献   

7.
Monophasic CaNaBi2Nb3O12 powders were synthesized via the conventional solid-state reaction route. Rietveld refinement of the X-ray powder diffraction (XRD) data and selected area electron diffraction (SAED) studies confirmed the phase to be a three-layer Aurivillius oxide associated with an orthorhombic B2cb space group. The dielectric properties of the ceramics have been studied in the 300–800 K temperature range at various frequencies (1 kHz to 1 MHz). A dielectric anomaly was observed at 676 K for all the frequencies corresponding to the ferroelectric to paraelectric phase transition as it was also corroborated by the high temperature X-ray diffraction studies. The incidence of the polarization–electric field (P vs. E) hysteresis loop demonstrated CaNaBi2Nb3O12 to be ferroelectric.  相似文献   

8.
Tungsten trioxide (WO3) doped with cobalt sesquioxide (Co2O3) was prepared by a conventional mixed oxide processing route and the thermoelectric properties were studied from 300 up to 1,000 K. The addition of Co2O3 to WO3 resulted in an increase in both the grain size and porosity, indicating that Co2O3 promotes the grain grown of WO3. The magnitude of the electrical conductivity (σ) and the absolute value of the Seebeck coefficient (|S|) depended strongly on the Co2O3 content. As for the power factor (σS 2 ), the 5.0 mol% sample has the maximum value of the power factor which is 0.12 μWm−1K−2 at 873 K.  相似文献   

9.
Glasses of the xFe2O3·(100−x)[B2O3·SrO] system, with 0 ≤ x ≤ 30 mol% were studied by X-ray diffraction, density, optical microscopy and FT-IR spectroscopy measurements. The X-ray patterns for the prepared system show that vitreous phase is present only in the sample with x < 40 mol%. For x ≥ 40 mol% in the studied samples is evidenced crystalline phase of Fe2O3. SEM measurements for the sample with x = 40 mol% shows that there are formed Fe2O3 microcrystallites with 10–20 μm dimension. FT-IR spectroscopy measurements shown that BO3 and BO4 are the main structural units of the glass system and the iron ions are located in the glass network.  相似文献   

10.
Based on the principle of stability of geopolymer gel as refractory binder, a geopolymeric paste in the K2O–Al2O3–SiO2 system was developed and used to produce refractory concretes by adding various amount of α-quartz sand (grain size in the range 0.1 μm to 1 mm) and fine powder alumina (grain size in the range 0.1–100 μm). The consolidated samples were characterized before and after sintering using optical dilatometer, DSC, XRD and SEM. The total shrinkage in the range of 25–900 °C was less than 3%, reduced with respect to the most diffused potassium or sodium based geopolymer systems, which generally records a >5% shrinkage. The maximum shrinkage of the basic geopolymer composition was recorded at 1000 °C with a 17% shrinkage which is reduced to 12% by alumina addition. The temperature of maximum densification was shifted from 1000 °C to 1150 or 1200 °C by adding 75 wt% α-quartz sand or fine powder alumina respectively. The sequences of sintering of geopolymer concretes could be resumed as dehydration, dehydroxylation, densification and finally plastic deformation due to the importance of liquid phase. The geopolymer formulations developed in this study appeared as promising candidates for high-temperature applications: refractory, fire resistant or insulating materials.  相似文献   

11.
A study of the effect of the presence of BIT (Bi4Ti3O12) in the dielectric and optical properties of the CaCu3Ti4O12 (CCTO) is presented. The samples were prepared by the solid state procedure. Mechanical alloying followed by the solid state procedure has been used successfully to produce powders of CaCu3Ti4O12 (CCTO) and BIT (Bi4Ti3O12) to be used in the composites. We also look at the effect of the grain size of the BIT and CCTO in the final properties of the composite. The samples were studied using X-Ray diffraction, scanning electron microscopy (SEM), Raman and infrared spectroscopy. We also did a study of the dielectric function K and dielectric loss of the samples. The role played by the grain size of CCTO and BIT in the dielectric constant and structural properties of the substrates are discussed. For frequencies below 10 MHz the K value presented by the CCTO100 sample is always higher than the K value presented by the BIT100 sample. At 100 Hz the value of K 1900 for the CCTO100 sample and 288 for the BIT100 sample. However for the composite sample one has an unexpected result. The dielectric constant is higher for all the frequencies under study. At 100 Hz the value of the K is around 10.000 for the BIT10 sample. Which is more than one order bigger compared to the CCTO100 value for the same frequency. Therefore, these measurements confirm the potential use of such materials for small high dielectric planar devices. These composites are also attractive for capacitor applications and certainly for microelectronics, microwave devices (cell mobile phones for example), where the miniaturization of the devices is crucial.  相似文献   

12.
Polycrystalline samples of mixed composites of Ni0.93Co0.02Mn0.05Fe2O4 + BaTiO3 were prepared by conventional double sintering ceramic method. The phase analysis was carried out by using X-ray diffraction technique. Variation of dc resistivity and thermo emf was studied as a function of temperature. AC conductivity (σac) was investigated in the frequency range 100 Hz–1 MHz. The loss tangent (tan δ) measurements conclude that the conduction mechanism in these samples is due to small polaron hopping. The magnetoelectric conversion factor, i.e. dc(ME) H was studied as a function of intensity of magnetic field and the maximum value 407 μV/cm/Oe was observed at a field of 0.8 kOe in a composite with 85% BaTiO3 and 15% Ni0.93Co0.02Mn0.05Fe2O4 phase.  相似文献   

13.
We have established the key trends in the variation of the intensity of the visible and IR luminescence of (Y1 − xyz Yb x Tm y Er z )2O2S solid solutions in relation to their composition under laser excitation at λ = 0.940 μm. The results obtained have been used to develop multifunctional anti-Stokes white phosphors with various tinges and a predetermined relative intensities of visible and IR emission bands.  相似文献   

14.
The formation of solid solutions of the type [Ba(HOC2H4OH)4][Sn1−x Ge x (OC2H4O)3] as BaSn1−x /Ge x O3 precursor and the phase evolution during its thermal decomposition are described in this paper. The 1,2-ethanediolato complexes can be decomposed to nano-sized BaSn1−x /Ge x O3 preceramic powders. Samples with x = 0.05 consist of only a Ba(Sn,Ge)O3 phase, whereas powders with x = 0.15 and 0.25 show diffraction patterns of both the Ba(Sn,Ge)O3 and BaGeO3 phase. The sintering behaviour was investigated on powders with a BaGeO3 content of 5 and 15 mol%. These powders show a specific surface area of 15.4–15.9 m2/g and were obtained from calcination above 800 °C. The addition of BaGeO3 reduced the sintering temperature of the ceramics drastically. BaSn0.95Ge0.05O3 ceramics with a relative density of at least 90% can be obtained by sintering at 1150 °C for 1 h. The ceramic bodies reveal a fine microstructure with cubical-shaped grains between 0.25 and 0.6 μm. For dense ceramics, the sintering temperature could be reduced down to 1090 °C, when the soaking time was extended up to 10 h.  相似文献   

15.
The microstructure and electrical properties of ZnO-Bi2O3-based varistor ceramics doped by Pr6O11 in the content range of 0–5.49 wt% were investigated at different sintering temperatures (1,100, 1,150, 1,175, 1,200 °C). The increase of sintering temperature leads to more dense ceramics, which increases the nonlinear property, whereas it decreases the voltage-gradient and leakage current. With increasing Pr6O11 content, the breakdown voltage increases because of the decreases of ZnO grain size. The improvement of non linear coefficient together with the decrease of leakage current are related to the uniformly distribution of secondary phases along the grain boundaries of the ZnO. The varistors sintered at 1,175 °C with the 3.37 wt% Pr6O11 doping possess the best electrical properties: the varistor voltage, nonlinear coefficient, and leakage current are 340 V/mm, 46 and 0.63 μA, respectively.  相似文献   

16.
By melting a mixture of high-purity oxides in a platinum crucible under flowing purified oxygen, we have prepared (TeO2)0.75(WO3)0.25 glass with a total content of 3d transition metals (Fe, Ni, Co, Cu, Mn, Cr, and V) within 0.4 ppm by weight, a concentration of scattering centers larger than 300 nm in size below 102 cm−3, and an absorption coefficient for OH groups (λ ∼ 3 μm) of 0.008 cm−1. The absorption loss in the glass has been determined to be 115 dB/km at λ = 1.06 μm, 86 dB/km at λ = 1.56 μm, and 100 dB/km at λ = 1.97 μm. From reported specific absorptions of impurities in fluorozirconate glasses and the impurity composition of the glass studied here, the absorption loss at λ ∼ 2 μm has been estimated at ≤100 dB/km. The glass has been drawn into a glass-polymer fiber, and the optical loss spectrum of the fiber has been measured.  相似文献   

17.
Potential multiferroic material, (BiNa)1/2(FeV)1/2O3, synthesized using solid-state route is investigated. The phase formation was confirmed by X-ray diffraction and surface morphology by scanning electron microscopy (SEM). Structural data reveal the single phase formation corroborated by SEM. The grain distribution is uniform with an average grain size of 3·6 μm. Electrical properties were investigated in a frequency range (1 kHz–1 MHz) by complex impedance spectroscopy (CIS) technique. The material showed negative temperature coefficient of resistance (NTCR) reflecting semiconductor behaviour. A.C. conductivity was found to obey Johnscher’s law. Conductivity mechanism is discussed and activation energy estimated (1·17 eV) for the conduction process is associated with Fe3 + → Fe2 +  variable state. The M–H curve showed the presence of ferromagnetism in the studied material.  相似文献   

18.
The sintering of lime by double calcination process from natural limestone has been conducted with La2O3 and CeO2 additive up to 4 wt.% in the temperature range 1500–1650° C. The results show that the additives enhanced the densification and hydration resistance of sintered lime. Densification is achieved up to 98.5% of the theoretical value with La2O3 and CeO2 addition in lime. Grain growth is substantial when additives are incorporated in lime. The grain size of sintered CaO (1600°C) with 4 wt.% La2O3 addition is 82 μm and that for CeO2 addition is 50 μm. The grains of sintered CaO in presence of additive are angular with pores distributed throughout the matrix. EDX analysis shows that the solid solubility of La2O3 and CeO2 in CaO grain is 2.9 and 1.7 weight %, respectively. The cell dimension of CaO lattice is 4.803 %C. This value decreases with incorporation of La2O3 and CeO2. The better hydration resistance of La2O3 added sintered lime compared to that of CeO2 added one, is related to the bigger grain size of the lime in former case.  相似文献   

19.
BaTi4O9 film was prepared on Pt/Ti/SiO2/Si substrate by laser chemical vapor deposition. The microstructure and dielectric properties were investigated. The single-phase BaTi4O9 film with random orientation was obtained. The surface consisted of round and rectangular grains, and the cross-section was columnar microstructure. The deposition rate (R dep) was 135 μm h−1. The dielectric constant (ε r) and loss (tanδ) were 35 and 0.01, respectively, at 1 MHz. With increasing temperature, ε r increased and showed a broad peak around 736 K, which indicated there might be a phase transition.  相似文献   

20.
Nanocrystalline ceramic powder of Ba0.8Bi2.133Nb1.6Ta0.4O9 was synthesized by chemical precursor decomposition method. The single-phase formation of the compound was confirmed using an X-ray diffraction technique and was found to be a tetragonal phase at room temperature. Average crystallite size and particle size were found to be 41 and 48.5 nm, which were analyzed through XRD and TEM respectively. The dielectric constant and tangent loss were measured in the frequency range 1 kHz–1 MHz after sintering the sample at 900 °C for 4 h. The polarization behavior was studied at an applied voltage of 6.2 kV/cm. Electrical properties of the material were investigated using complex impedance spectroscopy (CIS) technique, which revealed the presence of both grain and grain-boundary effects in the materials, which is also evidenced from the scanning electron microscope image. Grain conductivity indicated Arrhenius-type thermally activated process. AC conductivity spectrum obeys Jonscher’s universal power law. The electric modulus analysis suggests the possibility of hopping mechanism for electrical processes in the system with a non-debye type relaxation, which is supported by the impedance data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号