首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resistance against earthquake-related liquefaction is usually assessed using relationships between an index of soil strength such as normalized cone tip resistance and the cyclic resistance ratio (CRR) developed from observed field performance. The alternative approach based on laboratory testing is rarely used, mainly because of the apprehension that laboratory results may not reflect field behavior since the quality of laboratory data is often compromised by sampling disturbance. In this study, a database of laboratory data obtained mainly from cyclic testing of frozen (undisturbed) samples and in situ index measurements from near sampling locations comprised of cone tip resistance, qc, and shear wave velocity, Vs, have been assembled. These data indicate that neither normalized cone tip resistance nor normalized shear wave velocity individually correlate well with laboratory-measured CRR. However, the ratio of qc to the small strain shear modulus, G0, relates reasonably with CRR via separate correlations depending on geologic age. The derived qc/G0-CRR relationships were also found to be consistent with earthquake field-performance case histories.  相似文献   

2.
Liquefaction of granular soil deposits is one of the major causes of loss resulting from earthquakes. The accuracy in the assessment of the likelihood of liquefaction at a site affects the safety and economy of the design. In this paper, curves of cyclic resistance ratio (CRR) versus cone penetration test (CPT) stress-normalized cone resistance qc1 are developed from a combination of analysis and laboratory testing. The approach consists of two steps: (1) determination of the CRR as a function of relative density from cyclic triaxial tests performed on samples isotropically consolidated to 100 kPa; and (2) estimation of the stress-normalized cone resistance qc1 for the relative densities at which the soil liquefaction tests were performed. A well-tested penetration resistance analysis based on cavity expansion analysis was used to calculate qc1 for the various soil densities. A set of 64 cyclic triaxial tests were performed on specimens of Ottawa sand with nonplastic silt content in the range of 0–15% by weight, and relative densities from loose to dense for each gradation, to establish the relationship of the CRR to the soil state and fines content. The resulting (CRR)7.5-qc1 relationship for clean sand is consistent with widely accepted empirical relationships. The (CRR)7.5-qc1 relationships for the silty sands depend on the relative effect of silt content on the CRR and qc1. It is shown that the cone resistance increases at a higher rate with increasing silt content than does liquefaction resistance, shifting the (CRR)7.5-qc1 curves to the right. The (CRR)7.5-qc1 curves proposed for both clean and silty sands are consistent with field observations.  相似文献   

3.
Many false positives (no liquefaction detected when the normalized shear wave velocity-cyclic stress ratio (Vs1-CSR) combination indicated that it should have been) are observed in the database used in the simplified liquefaction assessment procedure based on shear wave velocity. Two possible reasons for false positives are the presence of a thick surface layer of nonliquefiable soil and the effects of fines on cyclic shear resistance (CRR) and Vs1. About 67% of the false positives that could not have been caused by an overlying thick surface layer are associated with silty sands with less than 35% fines. The effects of fines on the liquefaction resistance of silty sands and on the shear wave velocity are analyzed. Theoretical CRRfield?versus?Vs1 curves for silty sands containing 0 to 15% nonplastic fines are established. They show that the theoretical CRR-Vs1 correlations for silty sands with 5 to 15% nonplastic fines are all located to the far left of the semi-empirical curves that separate liquefaction from no-liquefaction zones in the simplified liquefaction potential assessment procedures. The results suggest the currently used shear wave velocity-based liquefaction potential curves may be overly conservative when applied to sands containing nonplastic fines.  相似文献   

4.
Shear wave velocity (Vs) offers engineers a promising alternative tool to evaluate liquefaction resistance of sandy soils, and the lack of sufficient in-situ databases makes controlled laboratory study very important. In this study, semitheoretical considerations were first given based on review of previous liquefaction studies, which predicted a possible relationship between laboratory cyclic resistance ratio (CRRtx) and Vs normalized with respect to the minimum void ratio, confining stress and exponent n of Hardin equation. Undrained cyclic triaxial tests were then performed on three reconstituted sands with Vs measured by bender elements, which verified this soil-type-dependent relationship. Further investigation on similar laboratory studies resulted in a database of 291 sets of data from 34 types of sandy soils, based on which the correlation between liquefaction resistance and Vs was established statistically and further converted to equivalent field conditions with well-defined parameters, revealing that CRR will vary proportionally with (Vs1)4. Detailed comparisons with Vs-based site-specific investigations show that the present lower-bound CRR–Vs1 curve is a reliable prediction especially for sites with higher CSR or Vs1. The framework of liquefaction assessment based on the present laboratory study is proposed for engineering practice.  相似文献   

5.
Liquefaction of granular soil deposits is one of the major causes of loss resulting from earthquakes. The accuracy of the liquefaction potential assessment at a site affects the safety and economy of an engineering project. Although shear-wave velocity (Vs)-based methods have become prevailing, very few works have addressed the problem of the reliability of various relationships between liquefaction resistance (CRR) and Vs used in practices. In this paper, both cyclic triaxial and dynamic centrifuge model tests were performed on saturated Silica sand No. 8 with Vs measurements using bender elements to investigate the reliability of the CRR-Vs1 correlation previously proposed by the authors. The test results show that the semiempirical CRR-Vs1 curve derived from laboratory liquefaction test of Silica sand No. 8 can accurately classify the (CRR,Vs1) database produced by dynamic centrifuge test of the same sand, while other existing correlations based on various sandy soils will significantly under or overestimate the cyclic resistance of this sand. This study verifies that CRR-Vs1 curve for liquefaction assessment is strongly soil-type dependent, and it is necessary to develop site-specific liquefaction resistance curves from laboratory cyclic tests for engineering practices.  相似文献   

6.
As an alternative to a field-based liquefaction resistance approach, cyclic triaxial tests with bender elements were used to develop a new correlation between cyclic resistance ratio (CRR) and overburden stress-corrected shear-wave velocity (VS1) for two nonplastic silts obtained from Providence, Rhode Island. Samples of natural nonplastic silt were recovered by block sampling and from geotechnical borings/split-spoon sampling. The data show that the correlation is independent of the soils’ stress history as well as the method used to prepare the silt for cyclic testing. The laboratory results indicate that using the existing field-based CRR-VS1 correlations will significantly overestimate the cyclic resistance of the Providence silts. The strong dependency of the CRR-VS1 curves on soil type also suggests the necessity of developing silt-specific liquefaction resistance curves from laboratory cyclic tests performed on reconstituted samples.  相似文献   

7.
Accounting for Soil Aging When Assessing Liquefaction Potential   总被引:1,自引:0,他引:1  
It has been recognized that liquefaction resistance of sand increases with age due to processes such as cementation at particle contacts and increasing frictional resistance resulting from particle rearrangement and interlocking. As such, the currently available empirical correlations derived from liquefaction of young Holocene sand deposits, and used to determine liquefaction resistance of sand deposits from in situ soil indices [standard penetration test (SPT), cone penetration test (CPT), shear wave velocity test (Vs)], are not applicable for old sand deposits. To overcome this limitation, a methodology was developed to account for the effect of aging on the liquefaction resistance of old sand deposits. The methodology is based upon the currently existing empirical boundary curves for Holocene age soils and utilizes correction factors presented in the literature that comprise the effect of aging on the in situ soil indices as well as on the field cyclic strength (CRR). This paper describes how to combine currently recorded SPT, CPT, and Vs values with corresponding CRR values derived for aged soil deposits to generate new empirical boundary curves for aged soils. The method is illustrated using existing geotechnical data from four sites in the South Carolina Coastal Plain (SCCP) where sand boils associated with prehistoric earthquakes have been found. These sites involve sand deposits that are 200,000?to?450,000?years in age. This work shows that accounting for aging of soils in the SCCP yields less conservative results regarding the current liquefaction potential than when age is not considered. The modified boundary curves indicate that old sand deposits are more resistant to liquefaction than indicated by the existing empirical curves and can be used to evaluate the liquefaction potential at a specific site directly from the current in situ properties of the soil.  相似文献   

8.
The cyclic liquefaction resistance of intact medium dense specimens of sands and silts obtained from offshore platform sites was compared to that of specimens reconstituted to the same values of shear wave velocity. The shear wave velocity was measured using a new system that is comprised of torsional piezoelectric ceramic ring transducers mounted in a triaxial cell, a multiwave measuring device, and special watertight connectors. The relationship between cyclic resistance ratio and the number of cycles to liquefaction Nf of intact and reconstituted specimens was compared at the same values of consolidation pressure and shear wave velocity. There was good agreement between cyclic resistance ratios of intact and reconstituted specimens with similar values of shear wave velocity if liquefaction is defined as ? 6% peak-to-peak axial strain. The results of this study support the hypothesis that the cyclic liquefaction resistance of reconstituted specimens may be restored to in situ conditions when their shear wave velocity is restored to in situ values.  相似文献   

9.
Saturation and Preloading Effects on the Cyclic Behavior of Sand   总被引:3,自引:0,他引:3  
In order to study pore water pressure response and liquefaction characteristics of sand, which has previously experienced liquefaction, two series of cyclic triaxial tests were run on medium dense sand specimens. In the first test series the influence of the soil saturation under undrained cyclic loading has been studied. It summarizes results of cyclic triaxial tests performed on Hostun-RF sand at various values of the Skempton’s pore-pressure coefficient. Analysis of experimental results gives valuable insights on the effect of soil saturation on sand response to undrained cyclic paths. In the second series of tests, the preloading influence on the resistance to the sands liquefaction has been realized on samples at various histories of loading. It was found that a large preloading induces a reduction of the resistance of sands to liquefaction.  相似文献   

10.
Effects of Nonplastic Fines on the Liquefaction Resistance of Sands   总被引:5,自引:0,他引:5  
A laboratory parametric study utilizing cyclic triaxial tests was performed to clarify the effects of nonplastic fines on the liquefaction susceptibility of sands. Studies previously published in the literature have reported what appear to be conflicting results as to the effects of silt content on the liquefaction susceptibility of sandy soils. The current study has shown that if the soil structure is composed of silt particles contained within a sand matrix, the resistance to liquefaction of the soil is controlled by the relative density of the soil and is independent of the silt content of the soil. For soils whose structure is composed of sand particles suspended within a silt matrix, the resistance to liquefaction is again controlled by the relative density of the soil, but is lower than for soils with sand-dominated matrices at similar relative densities. In this case, the resistance to liquefaction is essentially independent of the amount and type of sand. These findings suggest the need for further evaluation of the effects of nonplastic fines content upon penetration resistance, and the manner in which this relationship affects the simplified methods currently used in engineering practice to evaluate the liquefaction resistance of silty soils.  相似文献   

11.
A series of undrained tests were performed on granular soils consisting of sand and gravel with different particle gradations and different relative densities reconstituted in laboratory. Despite large differences in grading, only a small difference was observed in undrained cyclic shear strength or liquefaction strength defined as the cyclic stress causing 5% double amplitude axial strain for specimens having the same relative density. In a good contrast, undrained monotonic shear strength defined at larger strains after undrained cyclic loading was at least eight times larger for well-graded soils than poorly graded sand despite the same relative density. This indicates that devastating failures with large postliquefaction soil strain are less likely to develop in well-graded granular soils compared to poorly graded sands with the same relative density, although they are almost equally liquefiable. However, if gravelly particles of well-graded materials are crushable such as decomposed granite soils, undrained monotonic strengths are considerably small and almost identical to or lower than that of poorly graded sands.  相似文献   

12.
The liquefaction susceptibility of various graded fine to medium saturated sands are evaluated by stress controlled cyclic triaxial laboratory tests. Cyclic triaxial tests are performed on reconstituted specimens having global relative density of 60%. In all cyclic triaxial tests, loading pattern is selected as a sinusoidal wave form with 1.0 Hz frequency and effective consolidation pressure is chosen as 100 kPa. Liquefaction resistance is defined as the required cyclic stress ratio causing initial liquefaction in 10 cycles during the cyclic triaxial test. The results are used to draw conclusions on the effect of the extreme void ratios and void ratio range on the liquefaction resistance of various graded sands.  相似文献   

13.
Data from over 30 sites in 5 countries are analyzed to develop updated factors for correcting liquefaction resistance for aged sand deposits. Results of cyclic laboratory tests on relatively undisturbed and reconstituted specimens suggest an increase in the correction factors of 0.12 per log cycle of time and an average reference age of 2 days for the reconstitute specimens. Laboratory and field test results combined with cyclic resistance ratio (CRR) charts suggest an increase in the correction factors of 0.13 per log cycle of time and an average reference age of 23 years. A reference age of 23 years seems appropriate for the commonly used CRR charts derived from field liquefaction and no liquefaction case history data. Because age of natural deposits is often difficult to accurately determine, a relationship between measured to estimated shear-wave velocity ratio (MEVR) and liquefaction resistance correction factor is also derived directly from the compiled data. This new MEVR-liquefaction resistance correction factor relationship is not as sensitive to MEVR as in the relationship derived indirectly in a previous paper.  相似文献   

14.
Pore Pressure Generation of Silty Sands due to Induced Cyclic Shear Strains   总被引:2,自引:0,他引:2  
It is well established that the main mechanism for the occurrence of liquefaction under seismic loading conditions is the generation of excess pore water pressure. Most previous research efforts have focused on clean sands, yet sand deposits with fines are more commonly found in nature. Previous laboratory liquefaction studies on the effect of fines on liquefaction susceptibility have not yet reached a consensus. This research presents an investigation on the effect of fines content on excess pore water pressure generation in sands and silty sands. Multiple series of strain-controlled cyclic direct simple shear tests were performed to directly measure the excess pore water pressure generation of sands and silty sands at different strain levels. The soil specimens were tested under three different categories: (1) at a constant relative density; (2) at a constant sand skeleton void ratio; and (3) at a constant overall void ratio. The findings from this study were used to develop insight into the behavior of silty sands under undrained cyclic loading conditions. In general, beneficial effects of the fines were observed in the form of a decrease in excess pore water pressure and an increase in the threshold strain. However, pore water pressure appears to increase when enough fines are present to create a sand skeleton void ratio greater than the maximum void ratio of the clean sand.  相似文献   

15.
In order to simulate the effect of drainage on soils adjacent to gravel drains that are installed as countermeasure against liquefaction, several series of cyclic triaxial tests were performed on saturated sands under partially drained conditions. The condition of partial drainage under cyclic loading was simulated in the laboratory using triaxial testing equipment installed with a drainage control valve to precisely regulate the volume of water being drained from test specimens. Effects of both drainage conditions and loading frequencies on cyclic response were incorporated through the coefficient of drainage effect, α*. Experimental results showed that for sand exhibiting strain softening, the partially drained response was controlled by the critical effective stress ratio while for sand showing strain hardening behavior, the controlling factor was the phase transformation stress ratio. Moreover, test results indicated that the minimum liquefaction resistance under partially drained conditions can be used as a parameter to describe the liquefaction resistance of sands improved by the gravel drain method. From these results, a simplified procedure for designing gravel drains based on the factor of safety (FL) concept was proposed.  相似文献   

16.
A semiempirical approach to estimate liquefaction-induced lateral displacements using standard penetration test (SPT) or cone penetration test (CPT) data is presented. The approach combines available SPT- and CPT-based methods to evaluate liquefaction potential with laboratory test results for clean sands to estimate the potential maximum cyclic shear strains for saturated sandy soils under seismic loading. A lateral displacement index is then introduced, which is obtained by integrating the maximum cyclic shear strains with depth. Empirical correlations from case history data are proposed between actual lateral displacement, the lateral displacement index, and geometric parameters characterizing ground geometry for gently sloping ground without a free face, level ground with a free face, and gently sloping ground with a free face. The proposed approach can be applied to obtain preliminary estimates of the magnitude of lateral displacements associated with a liquefaction-induced lateral spread.  相似文献   

17.
Plasticity Model for Sand under Small and Large Cyclic Strains   总被引:2,自引:0,他引:2  
A plasticity constitutive model for sands is proposed, which combines a bounding surface framework for large cyclic strains with a Ramberg-Osgood-type hysteretic formulation for relatively smaller strains. The distinction between small and large cyclic strains is based on the volumetric threshold cyclic shear strain γtv, a well-established geotechnical parameter. The state parameter ψ is used explicitly to interrelate the critical, peak, and dilatancy deviatoric stress ratios. The plastic modulus is expressed as a particular function of accumulated plastic volumetric strain, which simulates empirically the effect of fabric evolution during shearing. Extensive comparisons with experiments show accurate simulation of the basic aspects of cyclic behavior for a wide range of cyclic strain amplitudes, specifically, (1) the degradation of shear modulus and increase of hysteretic damping with cyclic shear strain amplitude; (2) the evolving rates of shear strain and excess pore pressure (or volumetric strain) accumulation with number of cycles; and (3) the resistance to liquefaction. The 14 model parameters are proven independent of initial and drainage conditions, as well as the cyclic shear strain amplitude. The simulation of monotonic shearing is equally accurate.  相似文献   

18.
The disturbed state concept (DSC) and the dissipated energy approach can provide simplified, fundamental, and mechanistic methods for the identification of the initiation and growth of liquefaction in saturated soils under cyclic and earthquake loading. Both approaches are developed and used for the analysis of liquefaction in the soil deposits at Port Island, Kobe, Japan, during the Hyogo-ken Nanbu earthquake. They are also used to analyze liquefaction of two sands during laboratory cyclic tests using torsional and multiaxial devices. It is shown that the DSC and energy criteria can lead to improved understanding of the mechanism of liquefaction, and to rational and simplified procedures compared to those based on empirical and index properties. Furthermore, the DSC possesses certain advantages over the energy approaches, particularly in terms of its implementation in computer (finite-element) programs for dynamic and liquefaction analysis.  相似文献   

19.
Liquefaction Resistance of Soils from Shear-Wave Velocity   总被引:8,自引:0,他引:8  
A simplified procedure using shear-wave velocity measurements for evaluating the liquefaction resistance of soils is presented. The procedure was developed in cooperation with industry, researchers, and practitioners and evolved from workshops in 1996 and 1998. It follows the general format of the Seed-Idriss simplified procedure based on standard penetration test blow count and was developed using case history data from 26 earthquakes and >70 measurement sites in soils ranging from fine sand to sandy gravel with cobbles to profiles including silty clay layers. Liquefaction resistance curves were established by applying a modified relationship between the shear-wave velocity and cyclic stress ratio for the constant average cyclic shear strain suggested by R. Dobry. These curves correctly predicted moderate to high liquefaction potential for >95% of the liquefaction case histories and are shown to be consistent with the standard penetration test based curves in sandy soils. A case study is provided to illustrate application of the procedure. Additional data are needed, particularly from denser soil deposits shaken by stronger ground motions, to further validate the simplified procedure.  相似文献   

20.
In Situ Pore-Pressure Generation Behavior of Liquefiable Sand   总被引:2,自引:0,他引:2  
To overcome current limitations in predicting in situ pore-pressure generation, a new field testing technique is used to measure directly the coupled, local response between the induced shear strains and the generated excess pore pressure. The pore-pressure generation characteristics from two in situ liquefaction tests performed on field reconstituted specimens are presented, including the pore- pressure generation patterns at various strain levels, the observed stages of pore-pressure generation, and pore-pressure generation curves. Comparisons of the in situ pore-pressure generation curves with data in the literature and from laboratory strain-controlled, cyclic direct simple shear tests support the in situ testing results. In addition, the effects of effective confining stress on threshold shear strain and pore- pressure generation curves are discussed. Comparisons of the rate of pore-pressure generation among the in situ tests, laboratory strain-controlled tests, and a model based on stress-controlled tests reveal that in situ pore pressures generated in reconstituted soil specimens during dynamic loading develop more similarly to those from cyclic strain-controlled laboratory testing. This observation implies that the evaluation of induced strains rather than induced shear stresses may be more appropriate for the simulation of pore-pressure generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号