首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 967 毫秒
1.
An experimental study of the lateral behavior of vertical pile groups embedded in reinforced and nonreinforced sandy earth slopes was carried out. The model tests include studies of group configurations, pile spacing, embedment length of pile, relative densities of sand, and location of pile groups relative to the slope crest. Several configurations of geogrid reinforcement with different lengths, widths, and number of layers were used to reinforce a sandy slope of 1 (V): 1.5 (H). Pile groups of 2×2 and 3×3 along with center-to-center pile spacing of 2D, 3D, and 4.5D and piles with embedment length to diameter ratios of L/D = 12 and 22 were considered. Based on test results, geogrid parameters that give the maximum lateral capacity improvement are presented and discussed.  相似文献   

2.
An experimental and numerical study of the behavior of an eccentrically loaded strip footing resting on geosynthetic-reinforced sand is presented. Particular attention was given to simulate footings constructed on unsymmetrical geogrid layers with eccentricity either direction of the footing. Several configurations of geogrid layers with different number, length, layer eccentricity along with the effect of the sand relative density, and the load eccentricity were investigated. A numerical study on a plane strain prototype footing was performed using finite element analysis. Test results indicate that the footing performance could be appreciably improved by the inclusion of layers of geogrid leading to an economic design of the footing. However, the efficiency of the sand-geogrid system is dependent on the load eccentricity ratio and reinforcement parameters. A close agreement between the experimental and numerical trend lines is observed. Based on the numerical and experimental results, critical values of the geogrid parameters for maximum reinforcing effect are established.  相似文献   

3.
The structural response of reinforced‐soil wall systems with more than one reinforcement type (nonuniform reinforcement) is investigated using a numerical approach. The selected reinforcement types and mechanical properties represent actual polyester geogrid and woven wire mesh products. The model walls are mainly of wrapped‐face type and have different reinforcement lengths, arrangements, and stiffness values. Additional wall models with tiered and vertical gabion facings are included for comparison purposes. The numerical simulation of wall models has been carried out using a finite difference‐based program and includes sequential construction of the wall and placement of reinforcement at uniform vertical spacing followed by a sloped surcharge. The wall lateral displacements and backcalculated lateral earth pressure coefficient behind the facing in all nonuniform reinforcement wall models show a clear dependence on relative stiffness values of reinforcement layers at different elevations. An equation is proposed that can be used to predict the maximum reinforcement load in nonuniform reinforced wrapped‐face walls of given backfill types and reinforcement configurations similar to those investigated in this study.  相似文献   

4.
Pile Response to Lateral Spreads: Centrifuge Modeling   总被引:1,自引:0,他引:1  
The paper presents results of eight centrifuge models of vertical single piles and pile groups subjected to earthquake-induced liquefaction and lateral spreading. The centrifuge experiments, conducted in a slightly inclined laminar box subjected to strong in-flight base shaking, simulate a mild, submerged, infinite ground slope containing a 6-m-thick prototype layer of liquefiable Nevada sand having a relative density of 40%. Two- and three-layer soil profiles were used in the models, with a 2-m-thick nonliquefiable stratum placed below, and in some cases also above the liquefiable Nevada sand. The model piles had an effective prototype diameter, d, of 0.6 m. The eight pile models simulated single end-bearing and floating reinforced concrete piles with and without a reinforced concrete pile cap, and two 2×2 end-bearing pile groups. Bending moments were measured by strain gauges placed along the pile models. The base shaking liquefied the sand layer and induced free field permanent lateral ground surface displacements between 0.7 and 0.9 m. In all experiments, the maximum permanent bending moments, Mmax occurred at the boundaries between liquefied and nonliquefied layers; the prototype measured values of Mmax ranged between about 10 and 300 kN?m. In most cases the bending moments first increased and then decreased during the shaking, despite the continued increase in free field displacement, indicating strain softening of the soil around the deep foundation. The largest values of Mmax were associated with single end-bearing piles in the three-layer profile, and the smallest values of Mmax were measured in the end-bearing pile groups in the two-layer profile. The companion paper further analyzes the Mmax measured in the single pile models, and uses them to calibrate two limit equilibrium methods for engineering evaluation of bending moments in the field. These two methods correspond to cases controlled, respectively, by the pressure of liquefied soil, and by the passive pressure of nonliquefied layers on the pile foundation.  相似文献   

5.
Permanent Strains of Piles in Sand due to Cyclic Lateral Loads   总被引:2,自引:0,他引:2  
The strain superposition concept, proposed for ballast study, is applied here to evaluate strain accumulation for laterally loaded piles in sand. It is shown that the soil properties, types of pile installation, cyclic loading types, pile embedded length, and pile∕soil relative stiffness ratio are important factors that influence the pile behavior under mixed lateral loads. These factors are quantified by means of a degradation factor, t, which is derived from the results of 20 full-scale pile load tests and then verified using 6 additional full-scale pile load tests.  相似文献   

6.
Development of urban cities in hilly terrain often involves the construction of high-rise buildings supported by large diameter piles on steep cut slopes. Under lateral loads, the piles may induce slope failure, particularly at shallow depths. To minimize the transfer of lateral load from the buildings to the shallow depths of the slope, an annulus of compressible material, referred to as sleeving, is usually constructed between the piles and the adjacent soil. However, the influence of the sleeving on the pile performance in a sloping ground is not fully studied and understood. To investigate the influence, a 3D numerical analysis of sleeved and unsleeved piles on a cut slope is described in this paper. The influences of relative soil stiffness on the response of sleeved piles are also examined. The load transfer from the laterally loaded sleeved pile to the sloping ground is primarily through a shear load transfer mechanism in the vertical plane. Under small lateral loads, the sleeving can lead to a significant reduction in subgrade reaction on the sleeved pile segment and may considerably increase the pile deflection and bending moments. Under large lateral loads, the influence of the sleeving on pile performance appears to diminish because of the widespread plastic zones developed around the pile.  相似文献   

7.
Laterally spreading nonliquefied crusts can exert large loads on pile foundations causing major damage to structures. While monotonic load tests of pile caps indicate that full passive resistance may be mobilized by displacements on the order of 1–7% of the pile cap height, dynamic centrifuge model tests show that much larger relative displacements may be required to mobilize the full passive load from a laterally spreading crust onto a pile group. The centrifuge models contained six-pile groups embedded in a gently sloping soil profile with a nonliquefied crust over liquefiable loose sand over dense sand. The nonliquefied crust layer spread downslope on top of the liquefied sand layer, and failed in the passive mode against the pile foundations. The dynamic trace of lateral load versus relative displacement between the “free-field” crust and pile cap is nonlinear and hysteretic, and depends on the cyclic mobility of the underlying liquefiable sand, ground motion characteristics, and cyclic degradation and cracking of the nonliquefied crust. Analytical models are derived to explain a mechanism by which liquefaction of the underlying sand layer causes the soil-to-pile-cap interaction stresses to be distributed through a larger zone of influence in the crust, thereby contributing to the softer load transfer behavior. The analytical models distinguish between structural loading and lateral spreading conditions. Load transfer relations obtained from the two analytical models reasonably envelope the responses observed in the centrifuge tests.  相似文献   

8.
Lateral pile cap tests were performed on a pile cap with three backfills to evaluate the static and dynamic behavior. One backfill consisted of loose silty sand while the other two consisted of 0.91- and 1.82-m-wide dense gravel zones between the pile cap and the loose silty sand. The 0.91- and 1.82-m-wide dense gravel zones increased the lateral resistance by 75 to 150% and 150 to 225%, respectively, relative to the loose silty sand backfill. Despite being thin relative to the overall shear length, the 0.92- and 1.82-m-wide gravel zones increase lateral resistance to approximately 54 and 78%, respectively, of the resistance that would be provided by a backfill entirely composed of dense gravel. The dynamic stiffness for the pile cap with the gravel zones decreased about 10% after 15 cycles of loading, while the damping ratio remained relatively constant with cycling. Dynamic stiffness increased by about 10 to 40% at higher deflections, while the damping ratio decreased from an initial value of about 0.30 to around 0.26 at higher deflections.  相似文献   

9.
Most of the current design methods for driven piles were developed for closed-ended pipe piles driven in either pure clay or clean sand. These methods are sometimes used for H piles as well, even though the axial load response of H piles is different from that of pipe piles. Furthermore, in reality, soil profiles often consist of multiple layers of soils that may contain sand, clay, silt or a mixture of these three particle sizes. Therefore, accurate prediction of the ultimate bearing capacity of H piles driven in a mixed soil is very challenging. In addition, although results of well documented load tests on pipe piles are available, the literature contains limited information on the design of H piles. Most of the current design methods for driven piles do not provide specific recommendations for H piles. In order to evaluate the static load response of an H pile, fully instrumented axial load tests were performed on an H pile (HP?310×110) driven into a multilayered soil profile consisting of soils composed of various amounts of clay, silt and sand. The base of the H pile was embedded in a very dense nonplastic silt layer overlying a clay layer. This paper presents the results of the laboratory tests performed to characterize the soil profile and of the pile load tests. It also compares the measured pile resistances with those predicted with soil property- and in situ test-based methods.  相似文献   

10.
Soil movements associated with slope instability induce shear forces and bending moments in stabilizing piles that vary with the buildup of passive pile resistance. For such free-field lateral soil movements, stress development along the pile element is a function of the relative displacement between the soil and the pile. To investigate the effects of relative soil-pile displacement on pile response, large-scale load tests were performed on relatively slender, drilled, composite pile elements (cementitious grout with centered steel reinforcing bar). The piles were installed through a shear box into stable soil and then loaded by lateral translation of the shear box. The load tests included two pile diameters (nominal 115 and 178?mm) and three cohesive soil types (loess, glacial till, and weathered shale). Instrumentation indicated the relative soil-pile displacements and the pile response to the loads that developed along the piles. Using the experimental results, an analysis approach was evaluated using soil p-y curves derived from laboratory undrained shear strength tests. The test piles and analyses helped characterize behavioral stages of the composite pile elements at loads up to pile section failure and also provided a unique dataset to evaluate the lateral response analysis method for its applicability to slender piles.  相似文献   

11.
This paper presents the results of six large-scale centrifuge model tests that were performed to study the effect of relative density and thickness of sand layers on the amount of settlement and lateral spreading. The models included a “river” channel with clay flood banks underlain by layers of loose and dense sand of variable thickness, and a bridge abutment surcharge on one of the banks. The model container was tilted to provide an overall slope to the model. Each model was subjected to three or four significant ground motion events, which were obtained by scaling the amplitude of recordings of the Kobe (1995) and Loma Prieta (1989) earthquakes. Several measurements of acceleration, pore water pressure, settlement, and lateral movement are presented. The liquefaction potential index and a deformation index, which combine the influences of depth, density, and layer thickness, were found to correlate reasonably well with liquefaction induced settlements and lateral deformations for the range of models tested and indicate that centrifuge results are consistent with field observations.  相似文献   

12.
A series of highly instrumented, large-scale centrifuge models have been tested to investigate the extent of remediation required to control settlement and lateral sliding of soil deposits at a hypothetical bridge site. The baseline model represents a prototype with a 9-m-thick layer of fine sand having a relative density (Dr) of 50%. The sand layer is overlain by clay floodplains with a free face at a river channel. One nearly level floodplain surface supports a bridge abutment. The other floodplain has a 9% slope toward the river. In different models, different amounts of the 50% relative density sand was densified to Dr = 80%. Full depth improvement reduced settlements and lateral sliding of the sand by about a factor of 3. Due to the effects at the clay-sand interface, lateral sliding of the surficial clay deposit was not controlled by densification of the sand. Tests in which the width of the densified zone was only about 75% of the thickness of the loose sand indicated that relatively narrow zones of improvement can control settlement and sliding of the sand. Differences in shear resistance, pore pressures, dilatancy, and energy dissipation in loose and dense sands are presented.  相似文献   

13.
The behavior of step tapered bored piles in sand, under static lateral loading, was examined by field tests at one site in Kuwait. A total of 14 bored piles including two instrumented piles were installed for lateral loading. The soil profile consists of medium dense sand with weak cementations and no groundwater was encountered in the boreholes. Laboratory tests were carried out to determine the basic soil characteristics and the strength parameters. Both the ultimate lateral capacity and the deflections at applied loads were examined. The results indicate increased lateral load carrying capacity and decreased deflections at different applied loads for the step tapered piles due to the enlargement or strengthening of the upper section of the piles. The advantages of using this type of pile is emphasized including the cost saving resulting from an economical design.  相似文献   

14.
The pressure and density dependence of the shear strength of sand poses a tricky problem in pile foundation design. In this study, a correlation is suggested to link the effective friction angle of sand with its initial confining pressure and relative density, and a simple approach incorporating this correlation is presented for predicting pile end bearing capacity. Assessment of the approach against pile load tests shows reasonably good agreement between predictions and measurements. It is also shown that the effect of the state-dependent strength is particularly important in cases where long piles are installed in dense sand deposits and the use of critical state friction angle will produce a conservative prediction in such cases.  相似文献   

15.
Analyzing Dynamic Behavior of Geosynthetic-Reinforced Soil Retaining Walls   总被引:1,自引:0,他引:1  
An advanced generalized plasticity soil model and bounding surface geosynthetic model, in conjunction with a dynamic finite element procedure, are used to analyze the behavior of geosynthetic-reinforced soil retaining walls. The construction behavior of a full-scale wall is first analyzed followed by a series of five shaking table tests conducted in a centrifuge. The parameters for the sandy backfill soils are calibrated through the results of monotonic and cyclic triaxial tests. The wall facing deformations, strains in the geogrid reinforcement layers, lateral earth pressures acting at the facing blocks, and vertical stresses at the foundation are presented. In the centrifugal shaking table tests, the response of the walls subject to 20 cycles of sinusoidal wave having a frequency of 2 Hz and of acceleration amplitude of 0.2g are compared with the results of analysis. The acceleration in the backfill, strain in the geogrid layers, and facing deformation are computed and compared to the test results. The results of analysis for both static and dynamic tests compared reasonably well with the experimental results.  相似文献   

16.
Small-scale tests were carried out on a monopile and fin piles to determine the effect the length of fins had upon the lateral displacement of cyclically loaded piles. A variety of loading conditions were applied to model piles in a dense sand by using a mechanical loading system. Ten thousand cycles were used in each test to represent 20 years of environmental loading on offshore structures. Variables included the magnitude, frequency, and direction of the load; the type of pile tip; and the length of the fins. The reduction in pile head displacement was used as a measure of the efficiency of the fins. The tests show that the fins reduced the lateral displacement by at least 50% after 10,000 cycles.  相似文献   

17.
Thirty six tests on model tubular steel piles embedded in sand were carried out in the laboratory to assess the effects of compressive load on uplift capacity of piles considering various parameters. The model piles were of 25 mm outside diameter and 2 mm wall thickness. The soil–pile friction angles were 21 and 29° in loose and dense conditions of sand. The piles were embedded in sand for embedment length/diameter ratios of 8,16, and 24 inside a model tank. They were subjected to a static compressive load of 0, 25, 50, 75, and 100% of their ultimate capacity in compression and subjected to pull out loading tests. The experimental results indicated that the presence of the compressive load on the pile decreases the net uplift capacity of a pile and the decrease depends on the magnitude of the compressive load. A logical approach, based on the experimental results, has been suggested to predict the net uplift capacity of a pile considering the presence of compressive load.  相似文献   

18.
Undrained Lateral Pile Response in Sloping Ground   总被引:1,自引:0,他引:1  
Three-dimensional finite element analyses were performed to study the behavior of piles in sloping ground under undrained lateral loading conditions. Piles of different diameter and length in sloping cohesive soils of different undrained shear strength and several ground slopes were considered. Based on the results of the finite element analyses, analytical formulations are derived for the ultimate load per unit length and the initial stiffness of hyperbolic p-y curves. New p-y criteria for static loading of piles in clay are proposed, which take into account the inclination of the slope and the adhesion of the pile-slope interface. These curves are used through a commercial subgrade reaction computer code to parametrically analyze the effect of slope inclination and pile adhesion on lateral displacements and bending moments. To validate the proposed p-y curves, a number of well documented lateral load tests are analyzed. Remarkable agreement is obtained between predicted and measured responses for a wide range of soil undrained shear strength and pile diameter, length, and stiffness.  相似文献   

19.
利用振动台进行了在地震激励下冻土、可液化砂土与钢管桩之间的相互作用模拟试验研究.试验设计柔性模型箱装填土体以模拟边界影响,通过配比试验制备混凝土砂浆模拟上覆冻土层,采用饱和砂土作为液化土,利用顶部附加集中质量的方法模拟钢管桩的惯性荷载.试验过程中选取调幅地震波模拟地震激励,通过实时测量桩的应变、桩/冻土位移和砂土内的孔隙水压力等方面的数据,分析冻土层覆盖下砂土的液化情况和与之对应的桩基动力反应情况.试验结果显示:在地基液化发生前,冻土层可以给桩基提供一定的侧向约束,有利于提高其承载力并抑制其侧向变形;然而一旦出现液化,冻土层则可能增强地基液化的趋势,导致桩基承载性能下降.   相似文献   

20.
Centrifuge Modeling of Torsionally Loaded Pile Groups   总被引:1,自引:0,他引:1  
This paper reports a series of centrifuge model tests on torsionally loaded 1×2, 2×2, and 3×3 pile groups in sand. The objectives of the paper are to investigate: (1) the response of the pile groups subjected to torsion; (2) the way in which the applied torque is transferred in the pile groups; (3) the internal forces mobilized in these torsionally loaded pile groups and their contributions to resist the applied torque; and (4) the influence factors that affect the load transfer, such as soil density and pile-cap connection. In these model tests, the group torsional resistances of the pile groups increased monotonically in the test range of twist angles up to 8°. Both torsional and lateral resistances of the individual piles were simultaneously mobilized to resist the applied torque. The torsional resistances were substantially mobilized at small twist angles, while the lateral resistances kept increasing in the whole range of twist angles. Thus, the contribution of the torsional resistances to the applied torque decreased at large twist angles. The piles at different locations in a pile group could develop not only different horizontal displacements, but also different pile–soil–pile interactions and load–deformation coupling effect, hence, the torsional and lateral resistances of the piles are a function of pile location. The soil density had a more significant effect on the torsional resistances than on the lateral resistances of the group piles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号