首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pile jacking is a piling technique that provides a noise- and vibration-free environment in the construction site. To improve termination criteria for pile jacking and to better understand the behavior of jacked piles, two steel H piles were instrumented, installed at a weathered soil site, and load tested. A set of termination criteria was applied to the test piles, which includes a minimum blow count from the standard penetration test, a specified final jacking force, a minimum of four loading cycles at the final jack force, and a specified maximum rate of pile settlement at the final jacking force. The two test piles passed all required acceptance criteria. Punching shear failure occurred at the failure load for both piles and the shaft resistance consisted of approximately 80% of the pile capacity. Based on the results of field tests in Hong Kong and Guangdong and several centrifuge tests, a relation between the ratio of the pile capacity Pult to the final jacking force PJ and the pile slenderness ratio is established. The Pult/PJ ratio is larger than 1.0 for long piles but may be smaller than 1.0 for short piles. A regression equation is established to determine the final jacking force, which is suggested as a termination criterion for jacked piles. The final jacking force can be smaller than 2.5 times the design load for very long piles, but should be larger than 2.5 times the design load for piles shorter than 37 times the pile diameter.  相似文献   

2.
Shaft Capacity of Open-Ended Piles in Sand   总被引:1,自引:0,他引:1  
This paper presents the results from an experimental investigation designed to examine the effect of soil-core development and cyclic loading on the shaft resistance developed by open-ended piles in sand. An instrumented open-ended model pile was installed either by driving or jacking into an artificially-created loose sand deposit in Blessington, Ireland. The tests provided continuous measurements of the soil-core development and the radial effective stresses during installation and subsequent load tests. The equalized radial effective stresses developed at the pile-soil interface were seen to be dependent on the degree of soil displacement (plugging) experienced during installation, the distance from the pile toe, and the number of load cycles experienced by a soil element adjacent to the pile shaft. A new design method for estimating the shaft capacity of piles in sand is proposed and compared with measurements made on prototype field-scale piles.  相似文献   

3.
采用西澳大学室内鼓轮式离心机,在预先固结的高岭黏土中开展不同离心力场(50g,125g及250g,g为重力加速度)条件下的模型压桩试验、T-bar试验和静力触探试验,分析了模型桩在贯入过程、静置稳定过程中桩身径向应力(σr)的变化规律,并对后期桩体拉伸载荷阶段的径向应力变化值(Δσr)及桩侧摩阻力变化情况行了探讨,揭示了在不同超固结比(OCRs)黏土中静压桩侧摩阻力的演变特性.在此基础上,通过两种经验公式方法对桩侧摩承载力进行了预测计算和对比分析.研究结果表明:沉桩过程中桩端相对高度(h/B)对桩身径向应力的发展变化有很大的影响,桩身不同位置(h/B)的总径向应力对同一贯入深度而言,存在桩侧径向应力退化现象;基于静力触探试验提出的经验方法,能有效考虑静力触探锥端阻力(qt)和桩端相对高度(h/B)因素的影响,将其应用于黏土沉桩时桩侧摩阻力的预测,可取得与试验实测结果较吻合的结果.研究成果对软土地区静压桩施工与承载力设计具有一定的工程指导意义.   相似文献   

4.
Tapered piles in comparison to cylindrical piles can be beneficial in terms of the load capacity. In this paper, estimation of the load capacity for tapered piles using cone penetration test (CPT) resistance was investigated. Fourteen calibration chamber load tests using different pile types and six CPTs were conducted under various soil conditions. From the calibration chamber test results, the total, base, and shaft load capacities were analyzed in terms of soil conditions and taper angle. To evaluate CPT-based load capacity of tapered piles, normalized base and shaft resistances were obtained from normalized unit load-settlement curves. Based on the normalized base and shaft resistances, design equations that can be used to evaluate the base and shaft resistances of tapered piles were proposed. The proposed method is valid for sands of medium to dense conditions, while it may result in unconservative predictions for loose sands. To check the accuracy of the proposed method, field load tests using both cylindrical and tapered piles were conducted and compared with the predictions using the proposed method. A simplified approach using an equivalent cylindrical pile was also investigated and compared.  相似文献   

5.
A large-scale field-monitoring program for studying residual forces in long-driven piles is described. Eleven steel H-piles, 34.2–59.8?m in embedded length, were instrumented with vibrating-wire strain gauges, installed and subjected to static loading tests in a building site in Hong Kong. The residual forces in these piles during and after pile installation were recorded. The development of residual forces as it relates to the pile penetration depth during construction, and in time after the piles were installed, is presented. The measured load transfers in the piles from static loading tests are reported and the effect of the residual forces on the interpretation of load-transfer behavior is studied. The field measurements show that residual forces increase approximately exponentially with penetration depth. The residual forces continue to increase with time after pile driving due to secondary compression of disturbed soils around the pile shaft and other factors. The large residual forces in the long piles significantly affect the interpretation of the pile load distributions. The effect of residual forces on the shaft resistance is significant at shallow depths. Bearing-capacity theory tends to overpredict the true toe resistance of the long piles founded in weathered soils.  相似文献   

6.
Shaft Capacity of Continuous Flight Auger Piles in Sand   总被引:1,自引:0,他引:1  
This paper presents the results of a series of field experiments performed to study the development of shaft resistance on continuous flight auger piles installed in sand. The test piles were instrumented in order to separate the shaft and base resistance, and to allow the determination of the distribution of shaft resistance along the pile shaft. The tests highlighted the importance of accurate calculation of the shaft resistance for nondisplacement piles. At a typical maximum allowable pile head settlement of 25?mm, more than 71% of the pile resistance was provided by shaft friction. Conventional methods of estimating shaft resistance were assessed. It was found that methods which incorporated parameters directly interpreted from in situ test results provided the most consistent estimates. In the final section, differences between the shaft resistances mobilized on displacement and nondisplacement piles are considered.  相似文献   

7.
Load Testing of a Closed-Ended Pipe Pile Driven in Multilayered Soil   总被引:2,自引:0,他引:2  
Piles are often driven in multilayered soil profiles. The accurate prediction of the ultimate bearing capacity of piles driven in mixed soil is more challenging than that of piles driven in either clay or sand because the mechanical behavior of these soils is better known. In order to study the behavior of closed-ended pipe piles driven into multilayered soil profiles, fully instrumented static and dynamic axial load tests were performed on three piles. One of these piles was tested dynamically and statically. A second pile served as reaction pile in the static load test and was tested dynamically. A third pile was tested dynamically. The base of each pile was embedded slightly in a very dense nonplastic silt layer overlying a clay layer. In this paper, results of these pile load tests are presented, and the lessons learned from the interpretation of the test data are discussed. A comparison is made of the ultimate base and limit shaft resistances measured in the pile load tests with corresponding values predicted from in situ test-based and soil property-based design methods.  相似文献   

8.
The ultimate bearing capacity of short, precast concrete piles driven into calcareous sands was examined by pile-load tests carried out at two sites in Kuwait. The piles had a 0.3 m × 0.3 m square cross section and extended to a maximum depth of 12 m. They were driven through a loose-to-compact calcareous surface sand layer underlain by a competent dense-to-very-dense siliceous cemented sand deposit. The pile tips and part of the pile shafts were embedded in the lower layer. The base resistance and shaft friction were calculated using the Meyerhof method for a layered soil profile. The method employs the standard penetration test N values. The results indicate that a great portion of the pile capacity is due to base resistance. The skin friction mobilized is small and consists of two components corresponding to the two layers penetrated along the pile shafts. The calculated pile capacities were very close to the measured values. The unit skin friction is not constant along the pile shafts.  相似文献   

9.
Pipe piles can be classified as either closed- or open-ended piles. In the present paper, the load capacity of both closed- and open-ended piles is related to cone penetration resistance qc through an experimental program using calibration chamber model pile load tests and field pile load tests. A total of 36 calibration chamber pile load tests and two full-scale field pile load tests were analyzed. All the test piles were instrumented for separate measurement of each component of pile load capacity. Based on the test results, the normalized base resistance qb/qc was obtained as a function of the relative density DR for closed-ended piles, and of both the relative density DR and the incremental filling ratio (IFR) for open-ended piles. A relationship between the IFR and the relative density DR is proposed as a function of the pile diameter and driving depth. The relationship between IFR and DR allows the estimation of IFR and thus of the pile load capacity of open-ended piles at the design stage, before pile driving operations.  相似文献   

10.
Base Resistance of Jacked Pipe Piles in Sand   总被引:1,自引:0,他引:1  
The paper presents the results from an experimental program carried out at Trinity College Dublin, in which instrumented model piles were jacked into loose dry sand in a large testing chamber. A number of pile installations were carried out to study the effects of in situ stress, diameter, and wall thickness on the behavior of open-ended piles in sand. These indicated that plug stiffness and capacity may be expressed as simple functions of the cone penetration test end resistance and the incremental filling ratio prior to loading. The magnitude and distribution of shear stresses measured on the inner wall are shown to be compatible with existing experimental data and can be related directly to the stress level, interface friction angle, and dilation of the sand at the pile wall. The data are shown to facilitate a better understanding of the factors controlling plug resistance.  相似文献   

11.
The laboratory and field test data on the response of piles under the combined action of vertical and lateral loads is rather limited. The current practice for design of piles is to consider the vertical and lateral loads independent of each other. This paper presents some results from three-dimensional finite-element analyses that show the significant influence of vertical loads on a pile’s lateral response. The analyses were performed in both homogeneous clayey soils and homogeneous sandy soils. The results have shown that the influence of vertical loads on the lateral response of piles is to significantly increase the capacity in sandy soils and marginally decrease the capacity in clayey soils. In general, it was found that the effect of vertical loads in sandy soils is significant even for long piles, which are as long as 30 times the pile width, while in the case of clayey soils, the effect is not significant for piles beyond a length of 15 times the width of the pile. The design bending moments in the laterally loaded piles were also found to be dependent on the level of vertical load on the piles.  相似文献   

12.
Both the driving response and static bearing capacity of open-ended piles are affected by the soil plug that forms inside the pile during pile driving. In order to investigate the effect of the soil plug on the static and dynamic response of an open-ended pile and the load capacity of pipe piles in general, field pile load tests were performed on instrumented open- and closed-ended piles driven into sand. For the open-ended pile, the soil plug length was continuously measured during pile driving, allowing calculation of the incremental filling ratio for the pile. The cumulative hammer blow count for the open-ended pile was 16% lower than for the closed-ended pile. The limit unit shaft resistance and the limit unit base resistance of the open-ended pile were 51 and 32% lower than the corresponding values for the closed-ended pile. It was also observed, for the open-ended pile, that the unit soil plug resistance was only about 28% of the unit annulus resistance, and that the average unit frictional resistance between the soil plug and the inner surface of the open-ended pile was 36% higher than its unit outside shaft resistance.  相似文献   

13.
This note studies settlement ratio, Rs, of pile groups in sandy soils, defined as the ratio of the settlement of a pile group to that of a single pile at the same average load per pile. 31 cases of field pile-group load tests and the corresponding field single-pile load tests were collected for this study. More than one-half of the cases consist of 3-diameter spaced, 9-pile groups. Based on the field test data, statistical analyses of Rs at different load levels were conducted for pile groups with cap-ground contact (PGCs) and pile groups with freestanding caps (PGFs), respectively. The mean of Rs decreases with the load level for both PGCs and PGFs, whereas the coefficient of variation of Rs increases with the load level. The influence of cap-ground contact on Rs does not appear to be significant based on a comparison of the mean Rs values of these PGCs and PGFs. In addition, a comparative study on Rs and group resistance ratio Rr, which is defined as the ratio of the average resistance of a pile in a group to that of a single pile at the same settlement, was conducted to clarify possible misunderstanding between Rs and pile group efficiency factor η for driven pile groups in sandy soils. The value of Rs compares settlement at the working load and is often larger than unity. The value of η compares failure loads, which occur at different settlements for pile groups and their respective single piles. η is usually larger than unity due to soil densification and additional contributions from the cap-ground contact for PGCs.  相似文献   

14.
This paper provides a rational method for evaluating a realistic lower bound for the base resistance of pipe piles in siliceous sand. Separate expressions are developed to represent the response to load of the pile plug, the sand below the pile base, and the sand below the pile annulus. These expressions are combined to give the overall base response of a pipe pile. Predicted responses are compared with databases compiled on the ultimate capacities of pipe piles and with base pressure-displacement characteristics observed in static load tests. The estimations are shown to match observed base resistances of large diameter piles for which the coring mode of penetration during driving dominates.  相似文献   

15.
Most of the current design methods for driven piles were developed for closed-ended pipe piles driven in either pure clay or clean sand. These methods are sometimes used for H piles as well, even though the axial load response of H piles is different from that of pipe piles. Furthermore, in reality, soil profiles often consist of multiple layers of soils that may contain sand, clay, silt or a mixture of these three particle sizes. Therefore, accurate prediction of the ultimate bearing capacity of H piles driven in a mixed soil is very challenging. In addition, although results of well documented load tests on pipe piles are available, the literature contains limited information on the design of H piles. Most of the current design methods for driven piles do not provide specific recommendations for H piles. In order to evaluate the static load response of an H pile, fully instrumented axial load tests were performed on an H pile (HP?310×110) driven into a multilayered soil profile consisting of soils composed of various amounts of clay, silt and sand. The base of the H pile was embedded in a very dense nonplastic silt layer overlying a clay layer. This paper presents the results of the laboratory tests performed to characterize the soil profile and of the pile load tests. It also compares the measured pile resistances with those predicted with soil property- and in situ test-based methods.  相似文献   

16.
An extensive program of laboratory tests was carried out to study the effect of reinforcing an earth slope on the lateral behavior of a single vertical pile located near the slope. Layers of geogrid were used to reinforce a sandy slope of 1 (V):1.5 (H) made with sands of three different unit weights representing dense, medium dense, and loose relative densities. Several configurations of geogrid reinforcement with different numbers of layers, vertical spacing, and length were investigated. The experimental program also included studies of the location of pile relative to the slope crest, relative density of sand, and embedment length of pile. The results indicate that stabilizing a soil slope has a significant benefit of improving the lateral load resistance of a vertical pile. The improvement in pile lateral load was found to be strongly dependent on the number of geogrid layers, layer size, and relative density of the sand. It was also found that soil reinforcement is more effective for piles located closer to the slope crest. Based on test results, critical values are discussed and recommended.  相似文献   

17.
When bored piles are installed through a jet grout layer, significant interaction may take place between the piles and the jet grout. Field load tests have indicated that significant enhancement of the pile shaft capacity and axial stiffness was possible for both compression and tension piles. The influence of the jet grout layer was more pronounced for piles under compression loading compared with uplift loading. The effectiveness of the jet grout in transmitting load via shearing action was dependent on the thickness of the grouted zone, the strength of the interlocks between individual jet grout columns forming the grout slab, as well as the interface bond between the pile shafts and the grout. No apparent adverse effect on the performance of permanent foundations was envisaged as a result of the presence of the jet grout layer. However, interpretation of pile behavior from load tests was complicated by the interaction between the test pile and jet grout, resulting in overprediction of pile capacity and axial stiffness. The significance of the interaction has to be carefully evaluated so that a correct interpretation of the true pile capacity and axial stiffness can be made.  相似文献   

18.
Conventional pile materials such as steel, concrete, and timber are prone to deterioration for many reasons. Fiber-reinforced polymer (FRP) concrete composites represent an alternative construction material for deep foundations that can eliminate many of the performance disadvantages of traditional piling materials. However, FRP composites present several difficulties related to constructability, and the lack of design tools for their implementation as a foundation element. This paper describes the results of an experimental study on frictional FRP/dense sand interface characteristics and the constructability of FRP–concrete composite piles. An innovative toe driving technique is developed to install the empty FRP shells in the soil and self-consolidating concrete is subsequently cast in them. The experimental program involves interface shear tests on small FRP samples and uplift load tests on large-scale model piles. Two different FRP pile materials with different roughness and a reference steel pile are examined. Static uplift load tests are conducted on different piles installed in soil samples subjected to different confining pressures in the pressure chamber. The results showed that the interface friction for FRP materials compared favorably with conventional steel material. It was shown that toe driving is suitable for installation of FRP piles in dense soils.  相似文献   

19.
Determination of Pile Base Resistance in Sands   总被引:4,自引:0,他引:4  
Advances in the design of axially loaded piles are desirable because significant cost savings may result. Well-designed piles settle by amounts that are well tolerated by the superstructure and induce strains around the pile base that are far removed from failure. To investigate the development of base resistance for a given soil condition and increasing settlements, piles embedded in sand are modeled using the finite-element method with a nonlinear elastic-plastic model. Based on the load-settlement response obtained from the finite-element analysis and cone penetration resistance obtained from cavity expansion and stress rotation analyses, values of normalized base resistance, defined as base resistance divided by cone penetration resistance, are obtained. The relationship between base resistance and cone resistance is useful in the design of deep foundation using cone penetration test results. The effect of the initial coefficient of earth pressure at rest K0 on normalized base resistance values is also investigated. Several case histories, including both nondisplacement and displacement piles, are used for comparison with the theoretical results.  相似文献   

20.
The results of a series of dynamic centrifuge tests on model pile groups in (level) liquefied and laterally spreading soil profiles are presented. The piles are axially loaded at typical working loads, which has enabled liquefaction-induced settlements of the foundations to be studied. The development of excess pore pressures within the bearing layer (dense sand) was found to lead to a reduction in pile capacity and potentially damagingly large coseismic settlements. As the excess pore pressure increased, these settlements were observed to exceed postshaking downdrag-induced settlements, which occur due to the reconsolidation of liquefied sand around the pile shaft. In resisting settlement, the pile cap was found to play an important role by compensating for the capacity lost by the piles. This was shown to be achieved by the development of dilative excess pore pressures beneath the pile cap within the underlying loose liquefied sand which provide increasing bearing capacity with settlement. The centrifuge test data show good qualitative and quantitative agreement with the limited amount of model and full-scale data currently available in the literature. The implications of settlement for the design of piled foundations to serviceability conditions in both level and sloping ground are discussed, with settlement becoming an increasingly important consideration for laterally stiffer piles. Finally, empirical relationships have been derived from the test data to relate suitable static safety factors to given increases in excess pore pressure in the bearing layer within a performance-based design framework (i.e., based on limiting displacements).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号