首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the results of experimental and numerical studies of the comparative behavior of square hollow section (SHS) tubes filled with rigid polyurethane foam (RPF) and concrete undergoing transverse impact loading. A series of instrumented drop hammer tests were performed on mild steel and stainless steel SHSs for both filled and unfilled constructions. The concrete-filled tubes had the highest impact resistance and energy absorption capacity, followed by the steel tubes filled with RPF, and then the hollow tubes. The results also show that RPFs can be used as an effective infill material in structural steel hollow columns when expedient enhancement of the energy absorption capacity is required, e.g., to increase blast and impact resistance of hollow structural elements. Nonlinear dynamic finite-element analyses were carried out to simulate drop hammer test conditions. The predicted impact forces, deformation histories, and failure modes were found to be in good agreement with the experimental results.  相似文献   

2.
3.
Constructed in 1972 with ASTM A36 (250 MPa) steel, a highway bridge in Maryland is comprised of seven welded steel plate girders of a constant web depth of 2,286 mm (90 in.). In March 2003, the web fractures of two steel girders were discovered in a three-span continuous superstructure unit. A full-height web fracture occurred in an interior girder at a cross frame connection plate; and a partial-height web fracture occurred in an exterior girder at an intermediate transverse stiffener next to a cross frame. The investigation of the girder fractures involved fracture surface examination, material testing, fracture mechanics analysis, and comprehensive finite-element modeling for fracture driving forces. The fracture mechanics analysis indicated that a brittle web fracture could occur at a high stress level with either a surface crack or a through-thickness crack of certain dimensions. Finite-element analysis using a global model and submodels investigated three possible causes: (1) localized distortion of the unsupported web gap due to the lateral forces of cross frame members; (2) fabrication induced out-of-flatness of the web plate under in-plane loading; and (3) residual stresses at the fracture origin area due to the stiffener-to-web welds. The investigation concluded that one or a combination of these can result in the high local tensile stresses triggering a brittle web fracture with certain crack dimensions at the fracture origin area. Several retrofit concepts were investigated for their effectiveness in reducing stresses in the fracture origin area. Bridge inspections in the subsequent 6 years after the web fractures have not reported any other cracks in the bridge.  相似文献   

4.
A new model is proposed to simulate ductile fracture initiation due to large amplitude cyclic straining in structural steels, which is often the governing limit state in steel structures subjected to earthquakes. Termed the cyclic void growth model (CVGM), the proposed technique is an extension to previously published models that simulate ductile fracture caused by void growth and coalescence under monotonic loading. The CVGM aims to capture ultra low cycle fatigue (ductile fracture) behavior, which is characterized by a few (generally, less than 20) reverse loading cycles to large inelastic strain amplitudes (several times the yield strain). The underlying mechanisms of low-cycle fracture involve cyclic void growth, collapse, and distortion, which are distinct from those associated with more conventional fatigue. The CVGM represents these underlying fracture mechanisms through plastic strain and stress triaxiality histories that can be modeled at the material continuum level by finite-element analyses. Development and validation of the CVGM is substantiated by about 100 notched bar tests, with accompanying finite-element analyses, metallurgical tests, and fractographic examinations of seven varieties of structural steels.  相似文献   

5.
A multifunctional hybrid glass fiber-reinforced polymer (GFRP)/steel joint has been developed for the transfer of compression and shear forces in thermal insulation sections of concrete slab structures used in building construction. The new pultruded cellular GFRP element improves considerably the energy savings of buildings due to its low thermal conductivity. The quasi-static behavior of the GFRP element in insulating and load-transferring joints at the fixed support of cantilever beams was investigated. Two loading modes were investigated: a moment dominant mode and a shear dominant mode. Results show that the GFRP element is not critical at the ultimate limit state. Ductile failure occurs either in the concrete during yielding of the steel bars, or only in the steel bars that penetrate the hybrid GFRP/steel joint. In moment mode, the GFRP element only transfers the compressive forces from the bending moments. In shear mode, in addition to the moment transfer, about 43–63% of the shear forces are transferred in the element webs at ultimate limit state due to tilting of the element. The application proves that multifunctionality can lead to competitive solutions for GFRP composites used in load-carrying components and can compensate for the relatively high material cost.  相似文献   

6.
Three‐dimensional (3D) contact stresses occurring between the road surface and the tire that were measured with the South African Vehicle Road Surface Pressure Transducer Array (VRSPTA) device under a moving wheel are transformed to a corresponding force/stress pattern representing the actual contact stress state under the tire by means of a software program. In combination with a dynamic load function such force patterns derived from these Stress‐in‐Motion (SIM) measurements with the VRSPTA device are used to introduce a more advanced load representation of the tire‐pavement interface into a three‐dimensional (3D) finite element (FE) model. Further, a method is presented to derive viscoelastic material properties of asphalt concrete (AC) mixes from dynamic frequency sweep shear (FS‐S) tests of lab specimens or field cores that can be used to define material behavior of the AC layers in the 3D FE pavement model. Linear elastic layered theory is utilized to validate the results of the FE computations in order to demonstrate that the FE method can successfully be used to include SIM measurements for more advanced analysis and design of pavements. First results of the 3D FE simulation of a load circle of the Heavy Vehicle Simulator (HVS) during accelerated pavement testing of a pavement test section are presented. These results encourage employment of the FE pavement model for further simulation work to assess the rutting potential of AC mixes in combination with different tire types and loading situations.  相似文献   

7.
Two 381 mm (15 in. nominal) diameter fiber reinforced cement pipes have been tested under embankment loading conditions to study pipe response in both low stiffness, fine grained backfill, and a high stiffness graded granular backfill. Pipe deformations and strains were measured and interpreted to provide insight into the effect of soil backfill on the deformations and moments that develop. Not surprisingly, the use of silty clay backfill resulted in greater pipe deflections while the stiffer granular backfill lead to greater load transfer to the surrounding ground. Calculations using elastic soil-pipe interaction theory were effective in estimating the observed changes in pipe diameter at typical service loads (overburden pressures of 100 kPa, i.e., 14.4 psi in the lower stiffness backfill and 200 kPa, i.e., 28.8 psi in the high stiffness backfill). Measured strain distributions show that the fiber reinforced pipe exhibited ovaling response similar to that seen for flexible and semiflexible pipes. As expected, tensile strains were observed on the outer surface at the springlines and the inner surface at the crown. Strains observed at the haunch were negligible, indicating that the bending moments within the pipe have conventional “hourglass” distribution, with negligible moments at shoulders and haunches. Differences in strain measured at the inner and outer surfaces were used with the elastic pipe modulus to calculate the experimental bending moments. Comparisons of those experimental bending moments with the bending moment calculated for a rigid pipe indicate that these FRC pipe structures are semirigid so that moments are reduced as a result of support provided by the surrounding soil. A design expression for moment arching factor (MAF or moment divided by the rigid pipe moments) developed in an earlier paper was found to provide reasonable estimates for the experimental moment values. Moment estimated using the design soil moduli of McGrath and MAF provide moment values that are reasonable and conservative relative to those that were observed.  相似文献   

8.
This study investigates the interaction between soil and pipeline in sand subjected to lateral ground displacements with emphasis on the peak force exerted to a bended elbow-pipe. A series of three-dimensional (3D) finite-element (FE) analyses were performed in both opening and closing modes of the elbow section for different initial pipe bending angles. To model the mechanical behavior of sands, two soil models were adopted: Mohr-Coulomb and Nor-Sand soil model. Investigations also included the effects of pipe embedment depth and soil density. Results show that the opening mode exhibits higher ultimate forces and greater localized deformations than the closing mode. Nondimensional charts that account for pipeline location, bending angle, and soil density are developed. Soil-spring pipeline analyses of an elbow-pipe were performed using modified F-δ soil-spring models based on the 3D FE results and were compared to the findings of conventional spring model analyses using the standard two-dimensional soil-spring model. Results show that the pipe strain does not change in the closing mode case. However, in the opening mode case, the pipe strain computed by the modified analysis is larger than that by the conventional analysis and the difference is more pronounced when the pipe stiffness is stiffer.  相似文献   

9.
The results from a parametric study on the impact factors for 180 curved continuous composite multiple-box girder bridges are presented. Expressions for the impact factors for tangential flexural stresses, deflection, shear forces and reactions are deduced for AASHTO truck loading. The finite-element method was utilized to model the bridges as three-dimensional structures. The vehicle axle used in the analysis was simulated as a pair of concentrated forces moving along the concrete deck in a circumferential path with a constant speed. The effects of bridge configurations, loading positions, and vehicle speed on the impact factors were examined. Bridge configurations included span length, span-to-radius of curvature ratio, number of lanes, and number of boxes. The effect of the mass of the vehicle on the dynamic response of the bridges is also investigated. The data generated from the parametric study and the deduced expressions for the impact factors would enable bridge engineers to design curved continuous composite multiple-box girder bridges more reliably and economically.  相似文献   

10.
Portland cement concrete overlay on bridge deck is subjected to distresses of cracking and interface debonding under the effects of repeated vehicle loading and temperature cycling. In order to improve the overlay performance, this research used the polyacrylamide (PAM) polymer to modify the mechanical properties of concrete. The direct shear and impact resistance tests were designed to measure the interface bonding strength and dynamic performance, respectively. The comprehensive and flexural strength and three-point bending fatigue tests were conducted following the standards. Meanwhile, the three-dimensional finite-element (FE) models of the T-girder and box-girder bridges under the moving traffic loadings were built to analyze the stress response and improve the structural design. An analytical model of flexural stress was developed and validated the FE modeling results. A rubber cushion was designed in the FE model to “absorb” the flexural stress. Laboratory testing results indicate that PAM can significantly improve the flexural strength, bonding strength, impact resistance, and fatigue life of concrete. The modified concrete with 8% PAM by mass of cement poses higher flexural strength and impact resistance than concretes with other PAM percentages. FE simulation results indicate that there exists a critical overlay thickness inducing the maximum interface shear stress, which should be avoided in the structural design. The rubber cushion can effectively relieve the flexural stress.  相似文献   

11.
Kootenai River white sturgeon spawn in an 18-km reach of the Kootenai River, Id. Since completion of Libby Dam upstream from the spawning reach in 1972, 1974 is the only year with documented significant recruitment of juvenile fish. Where successful in other rivers, white sturgeon spawn over clean coarse material of gravel size or larger. The channel substrate in the current (2008) 18-km spawning reach is composed primarily of sand and some buried gravel; within a few kilometers upstream there is an extended reach of clean gravel, cobble, and bedrock. We used a quasi-three-dimensional flow and sediment-transport model along with the locations of collected sturgeon eggs as a proxy for spawning location from 1994 to 2002 to gain insight into spawning-habitat selection in a reach which is currently unsuitable due to the lack of coarse substrate. Spatial correlations between spawning locations and simulated velocity and depth indicate fish select regions of higher velocity and greater depth within any river cross section to spawn. These regions of high velocity and depth occur in the same locations regardless of the discharge magnitude as modeled over a range of pre- and postdam flow conditions. A flow and sediment-transport simulation shows high discharge, and relatively long-duration flow associated with predam flow events is sufficient to scour the fine sediment overburden, periodically exposing existing lenses of gravel and cobble as lag deposits in the current spawning reach. This is corroborated by video observations of bed surface material following a significant flood event in 2006, which show gravel and cobble present in many locations in the current spawning reach. Thus, both modeling and observations suggest that the relative rarity of extremely high flows in the current regulated flow regime is at least partly responsible for the lack of successful spawning; in the predam flow regime, frequent high flows removed the fine sediment overburden, unveiling coarse material and providing suitable substrate in the current spawning reach.  相似文献   

12.
使用MSC.Superform 2005有限元仿真软件,结合无锡西姆莱斯钢管有限公司提供的曼内斯曼穿管机结 构,建立基于33Mn2V钢的三维有限元仿真模型。仿真设计采用静力隐式算法,结合Kumar本构模型对实心坯二 辊斜轧穿孔过程进行热力耦合有限元模拟分析。模拟结果显示了穿管过程中出现的开裂等质量缺陷,而且缺陷位 置处的塑性应变与试验计算值吻合。模拟结果表明:椭圆形孔腔以及管坯下压量是导致管口与导板摩擦过大并产 生开裂的主要原因。为实际生产产品质量提高以及同行业进行相关仿真设计提供一定的参考。  相似文献   

13.
Numerical methods can be applied on metallurgical processes like engineering design of a steel ladle. In this study, the thermomechanical behaviour of refractory lining of a steel ladle which is lifted by a crane was investigated. To simulate this behaviour coupled heat transfer – structural analysis was made by using FEM (Finite‐Elements‐Method). For these calculations a two‐dimensional, an axially symmetrical geometric model and a FE‐model of a steel ladle with wear lining consisting of MgO‐C brick in the slag zone and castable MgO‐Al2O3–spinel in the working zone were created. Thermal stresses, hydrostatic pressure, gravity of molten steel and slag and refractory lining were used as boundary conditions. The results gained from the calculations showed that the maximum total displacements were observed at the bottom lining of the ladle.  相似文献   

14.
15.
The simulation of metal forming processes with the finite element method (FEM) in the sense of a “numerical experiment” is gaining more and more importance. Bending of FeP04 (St1403), × 5 CrNi 189 and AIMgSi1 sheets in V- and U-shaped dies prove the quality of this type of calculation. Of particular interest here is the determination of punch forces, strains and stresses in the workpiece. The calculation of residual stresses is important for process optimisation. Comparisons between calculated and experimentally determined results indicate the calculation qualities. There are many possibilities of influencing the simulation quality of residual stress calculations. In particular, the material model has to be optimally selected. Two combined isotropic-kinematic hardening models (from Axelsson/Samuelsson and McNamara/Sharma) implemented in the FE program to take the Bauschinger effect into consideration point out the influence of material models on the calculated residual stresses.  相似文献   

16.
Steel cables and tendons are commonly used in reinforcing steel beams as well as in concrete beams. However, the structural detail of cable anchors in steel beams tends to be complicated, and the effect on reducing live load stresses is not significant because of the relatively small stiffness of cables and tendons. On the contrary, by using high strength steel plates instead of cables and tendons, structural detail of the anchor area becomes simpler, and live load stresses as well as dead load stresses can be reduced in steel beams because of the relatively large stiffness of steel plates. In this study, the steel plate prestressing method is applied to beam specimens and intermediate floor beams of a steel railway through girder bridge. The behavior of the reinforcing steel plates and reinforced steel beams is monitored during prestressing and live loading, in order to assess the effects of prestressing and reinforcement. The study confirmed that these effects are beneficial to the performance of steel railway floor beams.  相似文献   

17.
Piles composed of more than one material in their cross section have been used for more than 100 years. Originally this was limited to driven steel shell or pipe piles filled with portland-cement concrete. More recent developments include various types of drilled elements such as micropiles that consist of various combinations of steel shells, portland-cement grout, and steel reinforcing bars. The structural analysis or design of piles with multicomponent cross sections under axial load requires that the axial stress be apportioned to the various components. Traditionally this has been done using an approximate one-dimensional model that implies the components interact with each other only axially, not radially, and that there is no radial interaction with the ground around the pile. This note presents a new three-dimensional model that explicitly and rigorously considers not only the Poisson effects caused by axial load and the triaxial stress field that develops within and between components of a pile as a result but also how this stress field is affected by radial stresses in the adjacent ground. This new model is based on the theory of linear elasticity and yields a closed-form solution that can be either evaluated independently or incorporated within a more general analytical model for axial pile capacity. Examples of calculated results obtained using this new model are presented and suggest that Poisson effects are relatively small in magnitude so that the traditional one-dimensional model is adequate for routine use in most cases.  相似文献   

18.
Fire performance of steel structures is highly dependent on the effectiveness of applied fire insulation. However, insulation materials are susceptible to damage under extreme loading events. A state-of-the-art review on the role of insulation damage on fire resistance of steel structures is presented. Parametric studies on a six-story steel-framed building were carried out to illustrate the effect of insulation damage on fire response of a steel structure. In the analysis, realistic fire scenarios, loading, and failure criteria were taken into consideration. Analysis results indicate that the fire resistance of a steel-framed structure is significantly influenced by the extent of insulation loss, type of fire scenario, and level of lateral load. Insulation damage causes faster deterioration in the structural response of framed buildings under the combined effect of fire and lateral loading. The need for accounting for any insulation damage, arising under extreme loading events, in fire design of steel-framed structures is highlighted, and a performance-based design strategy incorporating fire resistance analysis is discussed.  相似文献   

19.
Three-dimensional large deformation finite-element (FE) analyses were performed to investigate plate anchor capacity during vertical pullout. The remeshing and interpolation technique with small strain approach was expanded from two-dimensional to three-dimensional conditions and coupled with the FE software, ABAQUS. A modified recovery of equilibrium in patches technique was developed to map stresses after each remeshing. Continuous pullout of rectangular plate anchors was simulated and the large deformation results for strip, circular, and rectangular anchors were compared with model test data, small strain FE results, and plastic limit solutions. Interface conditions of no breakaway (bonded) and immediate breakaway (no tension) were considered at the anchor base. The effects of anchor roughness, aspect ratio, soil properties, and soil overburden pressure were investigated. It was found that the anchor roughness had minimal effect on anchor performance. For square and circular deep anchors under immediate breakaway conditions, the maximum uplift capacity increased with soil elastic modulus, which suggests that lower bound limit analysis and small strain FE analysis may overestimate the capacity. The soil beneath the anchor base separates from the anchor at a certain embedment depth near the mudline, once tensile stresses were generated. The ratio of separation depth to anchor width was found to increase linearly with the ratio of soil undrained shear strength to the product of soil effective unit weight and anchor width and was independent of the initial anchor embedment depth.  相似文献   

20.
The paper describes the analysis of failures of a 108‐in. (2.74 m) diameter steel pipe water main. Total pipe separations occurred because of large unrelieved thermal stresses and stress amplification caused by the eccentricity of the welded bell‐and‐spigot joints. The pipeline designer ignored these aspects in his design, thus grossly underestimating the stresses in the pipe. This could easily have been recognized by performing an elementary longhand calculation. The failure analysis described in this paper demonstrates that the asdesigned pipeline was incapable of safely withstanding even the incorrectly defined design conditions. The designer attributed the failures to low toughness of the bell steel. Conversions of Charpy impact test data and J‐integral analysis of compact tension test data are used to demonstrate that the steel had normal fracture toughness. Nonlinear finite element stress analysis and elasticplastic fracture mechanics demonstrate that for the measured range of fracture toughness the failures were inevitable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号