首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X‐ray microtomography from cold‐sprayed coatings brings a new insight on this deposition process. A noise‐tolerant segmentation algorithm is introduced, based on the combination of two segmentations: a deterministic multiscale segmentation and a stochastic segmentation. The stochastic approach uses random Poisson lines as markers. Results on a X‐ray microtomographic image of aluminium particles are presented and validated.  相似文献   

2.
The periodic arrangement of voids in ceramic materials templated by colloidal crystal arrays (inverse opals) has been analysed by transmission electron microscopy. Individual particles consisting of an approximately spherical array of at least 100 voids were tilted through 90° along a single axis within the transmission electron microscope. The bright‐field images of these particles at high‐symmetry points, their diffractograms calculated by fast Fourier transforms, and the transmission electron microscope goniometer angles were compared with model face‐centred cubic, body‐centred cubic, hexagonal close‐packed, and simple cubic lattices in real and reciprocal space. The spatial periodicities were calculated for two‐dimensional projections. The systematic absences in these diffractograms differed from those found in diffraction patterns from three‐dimensional objects. The experimental data matched only the model face‐centred cubic lattice, so it was concluded that the packing of the voids (and, thus, the polymer spheres that composed the original colloidal crystals) was face‐centred cubic. In face‐centred cubic structures, the stacking‐fault displacementvector is . No stacking faults were observed when viewingthe inverse opal structure along the orthogonal <110>‐type directions, eliminating the possibility of a random hexagonally close‐packed structure for the particles observed. This technique complements synchrotron X‐ray scattering work on colloidal crystals by allowing both real‐space and reciprocal‐space analysis to be carried out on a smaller cross‐sectional area.  相似文献   

3.
We demonstrate simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. Subject to the assumptions explicitly stated in the derivation, the algorithm solves the twin‐image problem of in‐line holography and is capable of analysing data obtained using X‐ray microscopy, electron microscopy, neutron microscopy or visible‐light microscopy, especially as they relate to defocus and point projection methods. Our simple, robust, non‐iterative and computationally efficient method is applied to data obtained using an X‐ray phase contrast ultramicroscope.  相似文献   

4.
Colloidal particles have long been used as imaging standards for electron microscopy and, more recently, for scanning probe microscopy. We have analysed gold, polystyrene and silica colloidal particles by both transmission electron microscopy and atomic/scanning force microscopy in an attempt to determine if any can be truly used as 'standards' of shape and/or size. From the transmission electron micrographs, we have obtained precise information of the particle circumference and mean diameter. By comparing the ratio of these to the value for π, we obtained a measure of the sphericity of the particles. We have also shadowed the particles with metal at a known angle and have analysed the shadow length to determine the particles' heights and shapes. The height information obtained from the shadow length data collected from the transmission electron micrographs was then compared with that obtained by atomic/scanning force microscopy. Our results show that cleaned (washed) silica or polystyrene particles closely approach true spheres. In the case of gold particles, height data obtained from shadow lengths analysed in transmission electron micrographs show good agreement with that obtained from the atomic/scanning force microscopy images even without washing. However, the gold particles often deviate from sphericity. Based upon both the shape and the physical properties of the colloidal particles, silica would be the best choice as a standard. We also have noticed that metal shadowing of colloidal particle samples used for atomic/scanning force microscopy offers an advantage which we call a 'nanoscale metric' visible in the image directly at each particle site. This information can be important if one wishes to use samples prepared from colloidal particles simply and reliably to determine the probe shape for scanning probe microscopy from image deconvolution/restoration methods or as a calibration sample.  相似文献   

5.
Scanning force microscopy (SFM) holds great promise for biological research. Two major problems that have confronted imaging with the scanning force microscope have been the distortion of the image and overestimation in measurements of lateral size due to the varying geometry and characteristics of the scanning tip. In this study, spherical colloidal gold particles (10, 20 and 40 nm in diameter) were used to determine (1) tip parameters (size, shape and semivertical angle); (2) the distortion of the image caused by the tip; and (3) the overestimation or broadening of lateral dimensions. These gold particles deviate little in size, are rigid and have a size similar to biological macromolecules. Images of the colloidal gold particles by SFM were compared with those obtained by electron microscopy (EM). The height of the gold particles as measured by SFM and EM was comparable and was little affected by the tip geometry. The measurements of the lateral dimensions of colloidal gold, however, showed substantial differences between SFM and EM in that SFM resulted in an overestimate of the lateral dimensions. Moreover, the distortion of images and broadening of lateral dimensions were specific to the SFM tip used. The calibration of the SFM tip with mica provided little clue as to the type of distortion and the amount of lateral broadening observed when the larger gold particles were scanned. The SFM image also depended on the orientation of the tip with respect to the specimen. Our results suggest that quantitative SFM imaging requires calibration to identify and account for both the distortions and the magnitude of lateral broadening caused by the cantilever tip. Calibration with gold particles is fast and nondestructive to the tip. The raw imaging data of the specimen can be corrected for the tip effect and true structural information can be derived. In summary, we present a simple and practical method for the calibration of the SFM tip using gold particles with a size in the range of biomacromolecules that allows: (1) selection of a cantilever tip that produces an image with minimal distortion; (2) quantitative determination of tip parameters; (3) reconstruction of the shape of the tip at different heights from the tip apex; (4) appreciation of the type of distortion that may be introduced by a specific tip and quantification of the overestimation of the lateral dimensions; and (5) calculation of the true structure of the specimen from the image data. The significance is that such calibration will permit quantitative and accurate imaging with SFM.  相似文献   

6.
Multiple‐labelling immuno‐EM is a powerful tool for localizing and co‐localizing different antigens simultaneously in cells and tissues at high spatial resolution. Commonly used labels for this purpose are differently sized gold spheres. A comparison of results obtained with differently sized markers is often difficult, because the diameters of markers influence labelling efficiency. In the current study, we investigate a method for high‐resolution multiple‐labelling immuno‐EM, using equally sized colloidal markers made of different metals. Energy filtering transmission electron microscopy is used to differentiate particles based on elemental composition. The labels consist of colloidal gold, palladium and platinum‐core gold‐shell particles of approximately 6 nm in diameter, which are conjugated to different primary antibodies. Applicability of the electron spectroscopic imaging, methodology is demonstrated by labelling of actin, α‐actinin and myosin on ultra‐thin cryosections of skeletal muscle tissue.  相似文献   

7.
Colloidal gold is easily prepared, and readily adsorbs to a number of immunoreagents and other proteins for a wide variety of uses for neuronal visualization. Gold probes serve a role as immunolabels for both light and electron microscopy. As an ultrastructural immunocytochemical marker for detection of proteins, peptides or amino acids, gold can be used for immunostaining thick or thin sections prior to embedding, or for immunostaining ultrathin sections after embedding tissue in conventional or unusual embedding matrices. By virtue of its particulate nature, gold as an immunolabel facilitates a semi-quantitative analysis of relative antigen densities on ultrathin sections. Various combinations of different size gold particles or dual immunolabelling with enzymatic immunolabels together with colloidal gold or silver-intensified gold serve well for ultrastructural immunocytochemical localization of two antigens in the same tissue section. Colloidal gold can be detected with light microscopy, transmission and scanning electron microscopy, and with confocal laser microscopy. Silver intensification allows detection of gold at both the light and electron microscope level, and increases the sensitivity of immunogold procedures. Colloidal gold is useful as a tracer for physiological studies of transport and internalization in neurons in vivo and in vitro; computer-assisted video imaging techniques allow detection and tracking of single gold particles in living cells.  相似文献   

8.
X‐ray microtomography is used to explore the textural evolution that soft materials undergo during a drying treatment. An original image processing algorithm is applied to vertical projections and reconstructed cross‐section images in order to quantify the texture at different stages of drying. Measurements are performed both on grey‐level and on binary images. It is shown that X‐ray microtomography is a very promising tool in the field of drying investigations. It can be used to determine internal moisture profiles, and to follow crack development and shrinkage in an accurate and non‐destructive way. This information is crucial to validate drying models. Waste‐water sludges are used as test materials to assess the validity of the proposed methodology. The management of these sludges, often including a drying stage, will become a challenge in the forthcoming years in accordance with environmental regulations. Samples collected in two waste‐water treatment plants are investigated. Their analysis by X‐ray microtomography brings to the fore two different drying behaviours, illustrating that sludge drying is a complex unit operation very sensitive to the way the material is produced.  相似文献   

9.
In this paper, the use of lithium fluoride (LiF) as imaging radiation detector to analyse living cells by single‐shot soft X‐ray contact microscopy is presented. High resolved X‐ray images on LiF of cyanobacterium Leptolyngbya VRUC135, two unicellular microalgae of the genus Chlamydomonas and mouse macrophage cells (line RAW 264.7) have been obtained utilizing X‐ray radiation in the water window energy range from a laser plasma source. The used method is based on loading of the samples, the cell suspension, in a special holder where they are in close contact with a LiF crystal solid‐state X‐ray imaging detector. After exposure and sample removal, the images stored in LiF by the soft X‐ray contact microscopy technique are read by an optical microscope in fluorescence mode. The clear image of the mucilaginous sheath the structure of the filamentous Leptolyngbya and the visible nucleolus in the macrophage cells image, are noteworthiness results. The peculiarities of the used X‐ray radiation and of the LiF imaging detector allow obtaining images in absorption contrast revealing the internal structures of the investigated samples at high spatial resolution. Moreover, the wide dynamic range of the LiF imaging detector contributes to obtain high‐quality images. In particular, we demonstrate that this peculiar characteristic of LiF detector allows enhancing the contrast and reveal details even when they were obscured by a nonuniform stray light.  相似文献   

10.
J. Pawley  R. Albrecht 《Scanning》1988,10(5):184-189
On biological samples, the topographic imaging capabilities of the new generation of scanning electron microscopes (SEM) (those having both field-emission guns and low aberration lenses) rival those of the replica techniques. In addition, they permit the localization of specific molecules on the sample surface using one of several labeling techniques utilizing heavy metal colloids. Normally, colloidal gold can be detected in the SEM both by the secondary electron signal (shape) and by the backscattered electron signal (BSE, Z-contrast). The new instruments seem to produce their best topographic images using low-beam voltage (1–5 kV) where topographic contrast is higher and the required thickness of the metal coating is less (Haggis and Pawley 1988, Ris and Pawley 1988). Although the detection of backscattered electrons is more difficult at low-beam voltage, we are able to show here that the secondary electron (SE) signal produced with a 2–5-kV beam permits the unambiguous detection of gold particles as small as 5 nm on carbon-coated specimens while a 1-kV beam produces a high-quality topographic image of the same sample.  相似文献   

11.
Silver enhancement of immunogold-labeled cells was carried out to increase the applicability of colloidal gold probes for visualization in the backscatter electron imaging (BEI) mode of a scanning electron microscope. Optimum conditions were established for single particle discrimination and differential counting of labeling density at low magnifications. Red blood cells double-labeled with 15 + 40 nm and 5 + 20 nm gold probes were silver-enhanced for 6 min and 20 min, respectively, at which times both pairs of labels increased to about 25 + 50 nm. The gold probes still appeared spherical after enhancement and were easily discriminated. Cells were also single-labeled with the above probes and enhanced accordingly. The present method enables visualization of individual particles of any probe size, labeling one, or simultaneously two, antigenic sites on cell surfaces. The silver enhancement procedure thereby allows cells to be labeled with small probes with increased labeling efficiency.  相似文献   

12.
To bypass limitations of conventional biochemical analysis, single‐particle biochemical analysis is used. To improve single‐particle biochemical analysis, procedures are needed to keep nanometre‐sized particles in focus while the particles are undergoing thermal motion. A simple, inexpensive procedure is developed here for keeping particles in focus during the continuous observing/discriminating/recording of two different particles, both of which are undergoing thermal motion. This procedure concentrates the particles in a plane of solution that is in focus when the cover glass surface is in focus. An essential component of the procedure is the addition of molten, low‐melt agarose to the specimen. Motionless binding to glass is inhibited by inclusion of anti‐stick additives in the specimen. Both carrier protein (gelatin) and non‐ionic detergent (Triton X‐100) are anti‐stick additives successfully used here. Intact bacteriophages T3 and T7 are used as model particles, in anticipation of the use of the procedures developed here for the analysis of the assembly of bacteriophages. Observing/discriminating/recording of colour‐tagged bacteriophages T3 and T7 is achieved at video frame rate with image splitting to discriminate colours.  相似文献   

13.
Lithium‐ion battery performance is intrinsically linked to electrode microstructure. Quantitative measurement of key structural parameters of lithium‐ion battery electrode microstructures will enable optimization as well as motivate systematic numerical studies for the improvement of battery performance. With the rapid development of 3‐D imaging techniques, quantitative assessment of 3‐D microstructures from 2‐D image sections by stereological methods appears outmoded; however, in spite of the proliferation of tomographic imaging techniques, it remains significantly easier to obtain two‐dimensional (2‐D) data sets. In this study, stereological prediction and three‐dimensional (3‐D) analysis techniques for quantitative assessment of key geometric parameters for characterizing battery electrode microstructures are examined and compared. Lithium‐ion battery electrodes were imaged using synchrotron‐based X‐ray tomographic microscopy. For each electrode sample investigated, stereological analysis was performed on reconstructed 2‐D image sections generated from tomographic imaging, whereas direct 3‐D analysis was performed on reconstructed image volumes. The analysis showed that geometric parameter estimation using 2‐D image sections is bound to be associated with ambiguity and that volume‐based 3‐D characterization of nonconvex, irregular and interconnected particles can be used to more accurately quantify spatially‐dependent parameters, such as tortuosity and pore‐phase connectivity.  相似文献   

14.
We present in this study results from X‐ray tomographic microscopy with synchrotron radiation performed both in attenuation and phase contrast modes on a limestone sample during two stages of water drying. No contrast agent was used in order to increase the X‐ray attenuation by water. We show that only by using the phase contrast mode it is possible to achieve enough water content change resolution to investigate the drying process at the pore‐scale. We performed 3D image analysis of the time‐differential phase contrast tomogram. We show by the results of such analysis that it is possible to obtain a reliable characterization of the spatial redistribution of water in the resolved pore system in agreement with what expected from the theory of drying in porous media and from measurements performed with other approaches. We thus show the potential of X‐ray phase contrast imaging for pore‐scale investigations of reactive water transport processes which cannot be imaged by adding a contrast agent for exploiting the standard attenuation contrast imaging mode.  相似文献   

15.
The histomicroscopy and normal anatomy of the major body organ systems were investigated in the adult killifish, Aphanius hormuzensis using histological examination, X‐ray imaging, double staining, light microscopy and scanning electron microscopy (SEM). Based on the histomicroscopic observations, the kidney, liver and swim bladder in the studied species were comparable to other fish models. The anterior portion of the kidney is bulbous, while the posterior portion is narrow and elongated; the liver has a single lobe and the swim bladder is a single‐chambered organ with no connection to the digestive tract (physoclistous). X‐ray imaging and double staining examination showed 12 abdominal and 15 caudal vertebrae and a single hypural plate in the caudal skeleton. According to light microscopy, the scales were rounded to pentagonal in shape with three types of radii (primary, secondary and tertiary), and the urohyal bone was elongated. SEM microscopy showed a single row of tricuspid teeth on the upper and lower jaw, respectively, each tooth has two lateral cusps that are shorter than the middle one. The number of teeth was 17–18 in the upper jaw and 19–20 in the lower jaw. The saccular otoliths were rounded‐trapezoid in shape with a moderately incised and V‐shaped excisura. The members of killifishes are an important group for biologists because of their evolutionary properties, regeneration capacity and usefulness as biological control and also for the ecotoxicological assessment of environmental pollution. The outcomes of this study may provide a useful basis for future research on the genus Aphanius.  相似文献   

16.
In this study, we aimed to increase the sensitivity of protein labeling using 1.4 nm gold nanoparticles and glutamate δ2 receptor (GluD2) from the postsynaptic membrane of the Purkinje cells. The very small marker size of the particles reduces the steric hindrance between antibodies leading to a higher labeling efficiency of more than one subunit per single receptor molecule. The nanoparticles are visible in 200 kV dark‐field scanning transmission electron microscope on freeze‐fractured carbon replica of nervous tissue after plasma cleaning treatment. The different elemental composition of nanoparticles as Au nanogold or CdS quantum dot can be distinguished by energy dispersive X‐ray spectroscopy. This method ensures detection of an average of three subunits per GluD2 and often labels all four of them with 1.4 nm Au nanoparticles. It is concluded that this high‐resolution microscopic method is useful for exploring the quaternary structure of membrane proteins. Microsc. Res. Tech. 75:1159–1164, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Soft X‐ray contact microscopy (SXCM) is, at present, a useful tool for the examination at submicrometre resolution of biological systems maintained in their natural hydrated conditions. Among current X‐ray‐generating devices, laser‐plasma sources are now easily available and, owing to their pulse nature, offer the opportunity to observe living biological samples before radiation damage occurs, even if the resolution achievable is not as high as with synchrotron‐produced X‐rays. To assess the potential of laser‐plasma source SXCM in the study of cellular organelles, we applied it for the analysis of chloroplasts extracted from spinach leaves and mitochondria isolated from bovine heart and liver. X‐ray radiation was generated by a nanosecond laser‐plasma source, produced by a single shot excimer XeCl laser focused onto an yttrium target. The images obtained with SXCM were then compared with those produced by transmission electron microscopy observation of the same samples prepared with negative staining, a technique requiring no chemical fixation, in order to facilitate their interpretation and test the applicability of SXCM imaging.  相似文献   

18.
Several dedicated commercial lab‐based micro‐computed tomography (μCT) systems exist, which provide high‐resolution images of samples, with the capability to also deliver in‐line phase contrast. X‐ray phase contrast is particularly beneficial when visualizing very small features and weakly absorbing samples. The raw measured projections will include both phase and absorption effects. Extending our previous work that addressed the optimization of experimental conditions at the commercial ZEISS Xradia 500 Versa system, single‐distance phase‐contrast imaging is demonstrated on complex biological and material samples. From data captured at this system, we demonstrate extraction of the phase signal or the correction of the mixed image for the phase shift, and show how this procedure increases the contrast and removes artefacts. These high‐quality images, measured without the use of a synchrotron X‐ray source, demonstrate that highly sensitive, micrometre‐resolution imaging of 3D volumes is widely accessible using commercially advanced laboratory devices.  相似文献   

19.
X‐ray microcomputed tomography (μCT) was applied in characterizing the internal structures of a number of irradiated materials, including carbon‐carbon fibre composites, nuclear‐grade graphite and tristructural isotropic‐coated fuel particles. Local cracks in carbon‐carbon fibre composites associated with their synthesis process were observed with μCT without any destructive sample preparation. Pore analysis of graphite samples was performed quantitatively, and qualitative analysis of pore distribution was accomplished. It was also shown that high‐resolution μCT can be used to probe internal layer defects of tristructural isotropic‐coated fuel particles to elucidate the resulting high release of radioisotopes. Layer defects of sizes ranging from 1 to 5 μm and up could be isolated by tomography. As an added advantage, μCT could also be used to identify regions with high densities of radioisotopes to determine the proper plane and orientation of particle mounting for further analytical characterization, such as materialographic sectioning followed by optical and electron microscopy. In fully ceramic matrix fuel forms, despite the highly absorbing matrix, characterization of tristructural isotropic‐coated particles embedded in a silicon carbide matrix was accomplished using μCT and related advanced image analysis techniques.  相似文献   

20.
A new software tool, the maximum pixel spectrum, detects rare events within a spectrum image data cube, such as that generated with electron‐excited energy‐dispersive X‐ray spectrometry in a scanning electron microscope. The maximum pixel spectrum is a member of a class of ‘derived spectra’ that are constructed from the spectrum image data cube. Similar to a conventional spectrum, a derived spectrum is a linear array of intensity vs. channel index that corresponds to photon energy. A derived spectrum has the principal characteristics of a real spectrum so that X‐ray peaks can be recognized. A common example of a derived spectrum is the summation spectrum, which is a linear array in which the summation of all pixels within each energy plane gives the intensity value for that channel. The summation spectrum is sensitive to the dominant features of the data cube. The maximum pixel spectrum is constructed by selecting the maximum pixel value within each X‐ray energy plane, ignoring the remaining pixels. Peaks corresponding to highly localized trace constituents or foreign contaminants, even those that are confined to one pixel of the image, can be seen at a glance when the maximum pixel spectrum is compared with the summation spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号