首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
热结构复合材料的制备及应用   总被引:6,自引:0,他引:6  
论述了热结构复合材料制造方法,包括泥浆浸注法、溶胶和聚合物热解法、熔体渗透法以及化学气相渗透法。扼要地分析了热结构复合材料的应用。  相似文献   

2.
综述了熔融渗硅法制备C/C-SiC复合材料的国内外研究和应用现状,重点分析了碳纤维预制体和C/C多孔体的制备,以及熔融渗硅过程对C/C-SiC复合材料性能和结构的影响,介绍了C/C-SiC复合材料作为热结构和摩擦材料在航空航天和先进摩擦制动系统中的应用,提出了C/C-SiC复合材料制备过程中存在的问题和今后研究的重点.  相似文献   

3.
将SiC纤维毡与C纤维毡交替层叠, 通过针刺工艺制备(C-SiC)f/C预制体, 采用化学气相渗透与前驱体浸渍裂解复合工艺(CVI+PIP)制备(C-SiC)f/C复合材料, 研究(C-SiC)f/C复合材料H2-O2焰烧蚀性能。利用SEM、EDS和XRD对烧蚀前后材料的微观结构和物相组成进行分析, 探讨材料抗烧蚀机理。结果表明: (C-SiC)f/C复合材料表现出更优异的耐烧蚀性能。烧蚀750 s后, (C-SiC)f/C复合材料的线烧蚀率为1.88 μm/s, 质量烧蚀率为2.16 mg/s。与C/C复合材料相比, 其线烧蚀率降低了64.5%, 质量烧蚀率降低了73.5%; SiC纤维毡在烧蚀中心区表面形成的网络状保护膜可以有效抵御高温热流对材料的破坏; 在烧蚀过渡区和烧蚀边缘区形成的熔融SiO2能够弥合材料的裂纹、孔洞等缺陷, 阻挡氧化性气氛进入材料内部, 使材料表现出优异的抗烧蚀性能。  相似文献   

4.
制备了B4C-SiC/C复合材料,并对其在800℃,1000℃,1200℃的恒温氧化行为进行了考察。在实验基础上,分析了影响其氧化行为的主要因素,并对复合材料的自愈合抗氧化性进行了初步评价。结果表明,复合材料在氧化过程中表现出自愈合抗氧化特性,这种性能依赖于复合材料中的B4C、SiC的含量、配比及氧化温度和氧化气氛。经过分析认为,复合材料的自愈合抗氧化性的差异可归因于在氧化条件下,复合材料表面生成陶瓷氧化物B2O3与SiO2的速率、含量及其物性(粘性、对基体材料的润湿性、挥发性和对氧的扩散系数)的不同。  相似文献   

5.
高性能C/SiC复合材料的快速制备   总被引:16,自引:5,他引:16  
研究开发了“CVI+PIP”组合工艺,本着“低成本、短研制周期,适合批量化生产”的目的,研制的C/SiC复合材料弯曲强度高达561MPa,断裂韧性高达17MPa  相似文献   

6.
C/C复合材料的研究进展   总被引:5,自引:2,他引:5  
C/C复合材料作为高温高强的新材料,在航天航空等高科技领域具有重要的地位,详细介绍了C/C复合材料的制备工艺及近年来的发展趋势,评价了各工艺的优缺点,并分析了今后要解决的问题,最后主要论述了材料的力学和抗氧化性能以及其潜在的应用。  相似文献   

7.
高温热处理对C/C-SiC复合材料制备与力学性能的影响   总被引:5,自引:5,他引:5  
以针刺整体炭毡为坯体,采用树脂浸渍和化学气相沉积混合法制备C/C多孔体,然后熔硅浸渗制得C/C-S iC复合材料;研究了C/C多孔体的高温热处理对C/C-S iC复合材料密度、孔隙度、力学性能及断裂方式的影响。结果表明:炭涂层进行高温热处理可改变复合材料的弯曲断裂方式,使其具有一定的“假塑性”,弯曲强度下降约16%,压缩强度提高约20%,硬度增加;C/C多孔体的最终高温热处理可打开孔隙,有利于液S i的渗入,制备出密度较高(>2.0 g.cm-3)、开孔率较小(<4%)的复合材料,但导致其力学性能下降,基本上不影响其断裂方式。  相似文献   

8.
旋转CVI制备C/SiC复合材料   总被引:2,自引:0,他引:2  
旋转 CVI是在 CVI原理基础上发展的一种制备 C/SiC复合材料的新工艺,通过石墨衬底的旋转,使预制体的制备与基体的沉积同步进行,能有效消除一般CVI工艺过程中存在的“瓶颈”效应.在自制的旋转 CVI设备上实验,探索了旋转 CVI工艺参数中 CHSiCl(MTS)的流量与浓度、沉积温度和C布缠绕线速度对SiC基体沉积速度,以及沉积温度对基体结构的影响.并在低压(5kPa)、高温 (1100℃)、 400 mL·min-1、 200 mL·min-1Ar、 MTS40℃与C布以1.1~3.5mm·min-1的线速度连续旋转的沉积条件下,实现了单丝纤维间微观孔隙、纤维束之间以及C布层间宏观孔隙的致密化同步完成.  相似文献   

9.
10.
3D-C/SiC复合材料热震损伤行为   总被引:1,自引:0,他引:1  
用3D—C/SiC和重结晶SiC陶瓷材料在光辐射热震试验机上进行了两种温度落差(△T=600℃,800℃)和不同应力的热震试验。3D—C/SiC用弹性模量和电阻表征的热震损伤曲线有相似的规律,即都大致由三阶段构成,首先是损伤急剧增加阶段,紧接着是损伤缓慢增加阶段,最后为损伤短暂的急剧增加阶段。个别电阻表征的热震损伤曲线仅在初始阶段损伤有下降现象。3D—C/SiC复合材料的抗热震性能明显优于重结晶SiC陶瓷材料;三种界面层的3D—C/SiC中,以热解碳沉积时间为20h获得的界面层复合材料热震寿命最长。  相似文献   

11.
采用直热式化学气相渗工艺制备了 C/ C复合材料 ,以 2 D无纬织物和碳毡为纤维预制体 ,液化石油气为碳源气体 ,在常压下经 2 5 h左右沉积得到整体密度分别为 1.6 0 g· cm- 3和 1.78g· cm- 3的 C/ C复合材料。观察了材料的微观结构 ,测试了材料的力学性能和热物理性能。结果表明 ,直热式化学气相渗制备的 C/ C复合材料具有良好的力学性能和热物理性能 ,是一种较为理想的制备 C/ C复合材料的新工艺。  相似文献   

12.
The French company Snecma Moteurs is a leading producer of high‐performance composites for operation under high mechanical stress and at high temperature, such as in jet engines, aircraft brake disks, or even rocket propulsion systems. The author presents the different families and generations of carbon‐carbon and ceramic‐matrix composites developed by Snecma, and discusses their manufacture and characteristics.  相似文献   

13.
采用密度为1.0g/cm~3的C/C素坯,联合化学气相渗透(CVI)和气相渗硅(GSI)2种工艺制备C/C-SiC复合材料,研究CVI C/C-SiC复合材料中间体的密度对CVI-GSI C/C-SiC复合材料物相组成、微观结构及力学性能的影响。结果表明:随着CVI C/C-SiC复合材料中间体密度的增大,CVI-GSI C/C-SiC复合材料C含量增多,残余Si含量减少,SiC含量先增多后减少,CVI-GSI C/C-SiC复合材料的密度先增大后减小;随着CVI C/C-SiC复合材料中间体的密度由1.27g/cm~3增加到1.63g/cm~3时,得到的CVI-GSI C/C-SiC复合材料的力学性能先升高后降低。当CVI C/C-SiC复合材料密度为1.42g/cm~3时,制得的CVI-GSI C/C-SiC复合材料力学性能最好,其弯曲强度为247.50MPa,弯曲模量为25.63GPa,断裂韧度为10.08MPa·m~(1/2)。  相似文献   

14.
综合原料的热物理性能分析和配比设计,实现了C/C复合材料载体孔隙体积的精细控制,采用热压-熔渗两步法在低温条件下制备了具有高致密、低残余Si含量特征的短碳纤维增强C/C-SiC复合材料。系统解析了C/C-SiC复合材料成型过程中的结构演变行为,研究了短纤维增强C/C-SiC复合材料的力学性能和失效机制。结果表明:多孔C/C复合材料载体孔隙的孔径呈双极分布特征,添加芳纶纤维可提高网络孔隙结构的连通性,具有显著的孔隙结构调控作用。SiC基体以网络骨架形态分布于C/C-SiC复合材料内部,与纤维束形成了强界面结合钉扎结构,高含量纤维协同作用下使C/C-SiC复合材料具有优异的综合力学性能,添加芳纶纤维可明显增加复合材料内部裂纹扩展路径,提高C/C-SiC复合材料的断裂韧性。碳纤维的面内各向同性分布及陶瓷相层间均匀分布对C/C-SiC复合材料承载、摩擦稳定性提升均具有积极作用。  相似文献   

15.
采用熔融硅液相浸渍法制备了C/C-SiC复合材料,反应生成的SiC主要分布在层间孔和束间孔碳基体表面,少量分布在束内孔.1600℃渗硅2 h,硅化深度约为2~4 μm.由于液态硅与碳之间的润湿性很好,在碳基体表面形成了连续的SiC层,局部有粗大的多面碳化硅颗粒生成;讨论了细晶粒连续SiC层和SiC粗晶粒形成机理.由于SiC的加入,材料的抗氧化性能得到明显改善.  相似文献   

16.
为了降低成本,以液化石油气作碳源气体,炭毡作增强体,利用多元耦合场CVI方法快速制备了炭/炭复合材料.研究表明,炭纤维预制体在650℃较低温度条件下沉积15h,密度达到了1.71g·cm~(-3);采用偏光显微镜研究了热解炭的显微结构.结果表明,在同一试样中存在粗糙层、光滑层和带状结构的热解炭,并且材料密度均匀性较好.同时分析了致密化的工艺过程并讨论了热解炭沉积机理.  相似文献   

17.
Carbon fibre reinforced carbon and SiC dual matrices composites (C/C-SiC) show superior tribological properties, high thermal shock resistance and good abrasive resistance, and they are promising candidates for advanced brake and clutch systems. The microstructure, mechanical properties, friction and wear properties, and application of the C/C-SiC composites fabricated by warm compacted-in situ reaction were introduced. The results indicated that the composites were composed of 50-60 wt pct carbon, 2-10 wt pct residual silicon and 30-40 wt pct silicon carbide. The C/C-SiC brake composites exhibited good mechanical properties. The value of flexural strength and compressive strength could reach 160 and 112 MPa, respectively. The impact strength was about 2.5 kJ·m-2. The C/C-SiC brake composites showed excellent tribological performance, including high coefficient of friction (0.38), good abrasive resistance (1.10 μm/cycle) and brake steadily on dry condition. The tribological properties on wet condition could be mostly maintained. The silicon carbide matrix in C/C-SiC brake composites improved the wear resistance, and the graphite played the lubrication function, and right volume content of graphite was helpful to forming friction film to reduce the wear rate. These results showed that C/C-SiC composites fabricated by warm compacted-in situ reaction had excellent properties for use as brake materials.  相似文献   

18.
利用碳纤维编织布为增强体,采用混合粉料模压成型工艺制备C/C-SiC复合材料,分析了各个因素对C/C-SiC复合材料密度及强度影响的大小以及显著性。研究表明,树脂与石墨粉比例和纤维含量对C/C-SiC复合材料密度的影响比较大,而硅粉含量以及配比浓度的影响较小且基本相同;同时树脂与石墨粉比例这一因素对C/C-SiC复合材料强度影响也非常显著。并且随着树脂含量的减少,C/C-SiC复合材料强度降低。  相似文献   

19.
用化学气相渗透方法,在准三维针刺炭毡中预沉积热解炭(PyC)和TaC涂层,再利用热解炭和树脂炭对该预制体进行后续致密化,制得含PyC-TaC-PyC复合界面的C/C复合材料(TaC-C/C),并对其进行氧乙炔焰烧蚀。与C/C相比,3 vol%TaC-C/C材料耐烧蚀性能无明显提高,且无法承受长时间的氧炔焰烧蚀;而14 vol%TaC-C/C材料表现出较好的长时间耐烧蚀性能。氧炔焰烧蚀后,复合材料表面由C、TaC、(Ta,O)及Ta2O5相组成。3 vol%TaC-C/C材料表面主要形成细小弥散的烧蚀斑点(5~20s)和烧蚀凹坑(120s);而14 vol%TaC-C/C材料表面则主要形成烧蚀斑点(5s)、较完整的氧化钽层(20s)以及烧蚀凹坑(120s)。14 vol%TaC-C/C材料在烧蚀20s后,复合材料可分为表面氧化物区、过渡区和基体区;复合材料表面完整连续的氧化钽层能有效保护复合材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号