首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 104 毫秒
1.
氮化硅陶瓷不仅具有较高的力学性能还具有良好的透波性能、导热性能以及生物相容性能,是公认的综合性能最优的陶瓷材料。作为轴承球的致密氮化硅陶瓷广泛应用在机械领域;作为透波材料的多孔氮化硅陶瓷广泛应用在航空航天领域;随着对氮化硅陶瓷材料的深入研究,其在导热性和生物相容性方面的优异特性逐渐被科研工作者认识并得到开发和应用。本文详细阐述了氮化硅粉体的制备方法,并综述了氮化硅陶瓷作为结构陶瓷在机械领域和航空航天领域的研究进展,此外还介绍了其作为功能陶瓷在半导体领域、生物制药领域的研究和应用现状,最后对其未来发展进行了展望。  相似文献   

2.
本文在对XJM-1型磨片机进行改装的基础上研究了静载多点压痕对氮化硅陶瓷强度的影响。实验发现:与原始强度相比,静载多点压痕后的氮化硅强度有所降低;强度与多点压痕荷载之间的关系曲线出现一极大值。分析后表明:表面残余应力与裂纹尺寸是影响陶瓷材料强度的两个主要因素,它们的变化将对陶瓷材料强度产生直接影响。  相似文献   

3.
Silicon Nitride and Related Materials   总被引:22,自引:0,他引:22  
Silicon nitride has been researched intensively, largely in response to the challenge to develop internal combustion engines with hot-zone components made entirely from ceramics. The ceramic engine programs have had only partial success, but this research effort has succeeded in generating a degree of understanding of silicon nitride and of its processing and properties, which in many respects is more advanced than of more widely used technical ceramics. This review examines from the historical standpoint the development of silicon nitride and of its processing into a range of high-grade ceramic materials. The development of understanding of microstructure–property relationships in the silicon nitride materials is also surveyed. Because silicon nitride has close relationships with the SiAlON group of materials, it is impossible to discuss the one without some reference to the other, and a brief mention of the development of the SiAlONs is included for completeness.  相似文献   

4.
This paper reviews investigations of silicon nitride–silicon carbide micro–nanocomposites from the original work of Niihara, who proposed the concept of structural ceramic nanocomposites, to more recent work on strength and creep resistance of these unique materials. Various different raw materials are described that lead to the formation of nanosized SiC within the Si3N4 grains (intragranular) and at grain boundaries (intergranular). The latter exert a pinning effect on the amorphous grain boundary phases in the silicon nitride and also act as nucleation sites for β-Si3N4, which limits grain growth during sintering. This finer microstructure results in strengths higher than for the monolithic silicon nitride. Intragranular SiC particles enhance strength and fracture toughness as a result of residual compressive thermal stresses within the nanocomposites. High temperature strength and creep resistance are also much higher than for monolithic silicon nitride and a few investigations of these topics are briefly reviewed and the proposed mechanisms are described. Within the context of other studies cited, work on Si3N4–SiC micro–nanocomposites by the current authors describes an aqueous processing route for better dispersion of commercial powders prior to sintering.  相似文献   

5.
Due to the high melting temperature of copper and copper alloys, conventional die-steel components used in pressure die casting these materials exhibit short service lifetimes and undergo thermal fatigue. Thermal and corrosion properties of silicon nitride were studied to assess the material's applicability in substituting conventional die-steels in casting copper and copper alloys. In this study, experiments were conducted to test the thermal shock resistance and corrosion behaviour of a commercial silicon nitride in contact with molten pure copper. The results did not indicate any corrosive reaction between silicon nitride and pure copper. However, the presence of copper oxides at high temperatures accelerated the oxidation of the ceramic resulting in considerable loss of material. The thermal shock behaviour of silicon nitride proved to be adequate for the application.  相似文献   

6.
Results obtained in a study of factors that affect shaping and sintering of highly porous materials are presented. A technology providing highly porous silicon nitride materials that is based on shaping preliminarily fabricated pieces of thermoplastic slip makes it possible to use initial silicon powders of different dispersities. Highly porous materials can also be produced on the basis of sialons and exhibit a diminished thermal conductivity and a heat resistance at the level of similar silicon nitride materials.Translated from Ogneupory i Tekhnicheskaya Keramika, No. 11, pp. 8 – 13, November, 1996.  相似文献   

7.
The adsorption and desorption of protons from aqueous solution onto the surfaces of a variety of commercial silicon carbide and silicon nitride powders has been examined using a surface titration methodology. This method provides information on some colloidal characteristics, such as the point of zero charge (pzc) and the variation of proton adsorption with dispersion pH, useful for the prediction of optimal ceramic-processing conditions. Qualitatively, the magnitude of the proton adsorption from solution reveals small differences among all of the materials studied. However, the results show that the pzc for the various silicon nitride powders is affected by the powder synthesis route. Complementary investigations have shown that milling can also act to shift the pzc exhibited by silicon nitride powder. Also, studies of the role of the electrolyte in the development of surface charge have indicated no evidence of specific adsorption of ammonium ion on either silicon nitride or silicon carbide powders.  相似文献   

8.
氮化硅陶瓷的烧结   总被引:3,自引:0,他引:3  
氮化硅陶瓷广泛用作高温结构材料,是很有前途的陶瓷材料之一。本文研究了氮化硅陶瓷烧结动力学,分析了影响氮化硅陶瓷烧结的因素,为氮化硅陶瓷烧结提供了依据  相似文献   

9.
氮化硅是一种具有优良性能的陶瓷材料,是一种理想的高温结构材料和高速切削刀具材料,近年来随着微波技术的发展,氮化硅的微波烧结越来越受关注。本文简述了氮化硅陶瓷材料传统烧结与微波烧结的研究现状;比较分析了各种烧结技术制备的氮化硅陶瓷的微观结构和力学性能,得出了微波烧结氮化硅陶瓷的优越性;最后提出氮化硅陶瓷微波烧结在未来研究中还需解决的问题。  相似文献   

10.
多孔氮化硅陶瓷透波材料具有优异的机械性能、耐热性能及介电性能,成为透波材料科学研究领域中的热点之一。本文介绍了多孔氮化硅陶瓷的主要制备技术,并对国内外多孔氮化硅陶瓷透波材料的应用研究进展进行了综述。  相似文献   

11.
Si3N4陶瓷材料的高温氧化理论及其抗氧化研究现状   总被引:1,自引:0,他引:1  
从热力学、动力学和整体控速过程探讨了氮化硅陶瓷材料高温氧化理论和氧化性质,阐述了表面改性技术对氮化硅抗氧化性能的影响.并对表面改性提高氮化硅抗氧化性能进行了展望。  相似文献   

12.
In order to improve the high-temperature performance of wave-transparent materials especially for the high-speed aircrafts application, filament winding combined with sol-gel method was adopted to the fabrication of unidirectional silicon nitride fiber reinforced silica matrix composites. The mechanical properties and the interface evolution at high temperatures were investigated. The results show that the composite sintered in N2 maintains a flexural strength of 210MPa at up to 1200°C, while its counterpart prepared in air experiences a dramatic reduction to about 73MPa. The degradation is due to the partial oxidation of silicon nitride fibers at the fiber matrix interface. Besides, it is also notable that the bending strength of these two composites undergoes a similar growth from about 160 to 210MPa when tested under 900°C, which can be explained by the release of thermal stress on the silicon nitride fibers.  相似文献   

13.
氮化硅具有比氧化铝、氧化锆等牙科陶瓷修复材料更好的力学性能、化学稳定性和生物相容性,已经用于生物骨科修复.近年来陆续有学者将氮化硅陶瓷引入到牙科修复领域,文章在介绍氮化硅陶瓷性能特点的基础上,综述了氮化硅陶瓷牙科种植体、氮化硅桩核冠及氮化硅饰面瓷的研究进展,并展望了氮化硅在牙科修复领域的未来研究方向.  相似文献   

14.
The possibility of providing a high level of mechanical properties in ceramic materials is proved experimentally by using hot pressing of highly active powders of silicon nitride obtained by plasmachemical synthesis (PCS) and self-propagating high-temperature synthesis (SHS). The requirements placed on the powders of silicon nitride used for the production of high-density and high-strength materials widen substantially.  相似文献   

15.
The present work is concerned with the sintering of an α-β sialon ceramic using five different silicon nitride powders from a single source. The parameters varied in the silicon nitride were the amount of "free' silicon, iron content, α:β ratio, and grain size as measured by BET surface. The sintering atmosphere was varied by use of protective powder beds with passive (boron nitride) and active (SiO-generating) properties. Five sintering temperatures between 1600° and 1800°C were used. Microstructural characterization as well as density, hardness, and fracture toughness measurements were carried out. The sintering conditions were found to be critical for obtaining fully dense materials and low weight change. The optimum sintering temperature was 1750°C. The silicon nitride powder with a high content of free silicon resulted in a material which was more susceptible to the sintering atmosphere conditions. An α-β sialon made from a silicon nitride powder with a high β-α phase ratio resulted in a higher β-α ratio in the sintered material.  相似文献   

16.
An electromagnetically transparent, structurally robust and environmentally resistant enclosure of radar antenna for ground based systems to modern avionics in military aircraft and missiles is called as radome. Radome materials are classified based on: (i) type of function - surface-based or flight-mode and (ii) speed of operation - subsonic, supersonic to hypersonic. The desired properties of these materials are low dielectric constant and low loss factor in addition to its capacity to withstand the high temperature of operation. Composite laminates of glass or aramid fibre reinforced polymeric resins are radome material candidates for applications in subsonic range. However, ceramics are the only viable option for military aerospace applications such as a fighter jet travelling at Mach 3 or an advanced hypersonic missile speeding up to Mach 5. This review outlines the hand-full of ceramic materials already in application as radome materials like high-purity-alumina, pyroceram, slip-cast-fused-silica, their processing technology, electromagnetic and mechanical properties, advantages and disadvantages with respect to advanced military vehicles. Use of silicon nitride based radome materials, that has exceptional mechanical strength and thermal stability up to 1400 °C is illustrated with respect to reaction bonded silicon nitride, hot pressed silicon nitride, silicon oxynitride, sialon and their composites. Design of new generation radome materials was conceptualized and discussed as applicable to silicon nitride and related ceramics, wherein incorporation of varied degree of porosity improves electromagnetic properties, simultaneously, maintaining the required mechanical strength. Multilayer and graded porosity and its influence on electromagnetic properties were briefly discussed. Si3N4 ceramics having controlled porosity leading to optimum electromagnetic and mechanical properties produced through systematic processing is proposed as the futuristic high temperature radome material for supersonic applications.  相似文献   

17.
Three-dimensional ceramic nanofiber-assembled materials with large specific surface area and excellent thermal insulation properties are attracting increasing interests for their unique structure and promising applications. In this paper, we propose a facile methodology to fabricate three-dimensional silicon nitride nanofiber-knitted ceramic foams via in situ reactive synthesis from silicon foams. Silicon particle-stabilized foams are fabricated for the first time using long-chain surfactant cetyltrimethyl ammonium bromide as a hydrophobic modifier. First, the fabrication and stability of silicon foams are investigated. Based on the stable silicon foams, silicon nitride-based nanofiber-knitted ceramic foams are synthesized via in situ reactive sintering in nitrogen atmosphere. The novel ceramic foam materials consist of three-dimensional nanofiber-assembled strut wall and nanofiber-spheres in the pores. The diameter of obtained silicon nitride nanofibers ranges from 15 to 100 nm. The unique nanofiber-knitted foams may have potential applications in specific fields, including catalysis, adsorption, separation, and thermal insulation.  相似文献   

18.
In a previous study, pseudoplastic deformation pits created by cavitation exposure were reported in silicon nitride and zirconia. In this research, further comparison of the size and number of pits between several silicon nitride and zirconia materials is carried out. The pits are larger and much more numerous in silicon nitride than in zirconia although silicon nitride is harder than zirconia. An explanation of this phenomenon is given. Also, in the previous study it was reported that apparently a partially stabilized zirconia with yttria oxide developed a delay in the phase transformation from tetragonal to monoclinic after being exposed to cavitation. In this research, further experiments related with this phase transformation delay are carried out. Also, the phase transformation is verified with X-ray diffraction analysis. It is concluded that the “activation” of the partial stabilized zirconia happens regardless of the oxide used to stabilize it.  相似文献   

19.
Silicon carbide refractory materials and specimens of silicon nitride and silicon oxynitride are tested under high-temperature attack from reducing (H2 and CO) and oxidizing gases (O2, air) and from molten slag, alkalis, and iron. It is shown that nitride-based refractory materials are prone to change their properties, structure, and resistance when exposed to molten slag, iron, and alkalis. Silicon oxynitride and silicon nitride resist attack from carbon monoxide and alkali and provide protection to silicon carbide used as the refractory lining for blast furnaces.  相似文献   

20.
在硫酸法钛白研磨-浸出耦合工艺条件下,研究了4种常用陶瓷材料磨球,即氧化锆(ZrO2)、氧化铝(Al2O3)、玛瑙球(SiO2)和氮化硅(Si3N4)的腐蚀和磨损行为及其共同作用规律。结果表明,在磨浸耦合体系中,氮化硅球受腐蚀作用最明显,其次是氧化铝球,而氧化锆球和玛瑙球受腐蚀作用较小。氧化锆球和玛瑙球磨损主要表现为球球碰撞和表面切削;氧化铝球为磨料磨损,矿物的引入会增加磨球的失重速率;氮化硅球由于受到腐蚀和磨料磨损共同作用,导致其表面剥落脱离而产生明显磨损。4种陶瓷磨球因物理磨损造成的磨球失重率均在80%以上,其中氧化铝球和氮化硅球受腐蚀和磨损协同作用明显。氧化铝球和氮化硅球的磨浸失重速率分别为1.76 和14.52 mg·cm-2·d-1,远高于氧化锆球和玛瑙磨球。研究结果为研磨-浸出耦合工艺中磨球材料的选择提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号