首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
3位氨基或硝基取代5-硝基-1,2,4三唑衍生物的合成与表征   总被引:3,自引:3,他引:0  
以3-氨基-5-硝基-1,2,4三唑(ANTA)、3,5-二硝基-1,2,4三唑的铵盐(ADNT)及2,4,6-三硝基氯苯为原料,设计、合成了1-苦基-3-氨基-5-硝基-1,2,4三唑,4-苦基-3,5-二硝基-1,2,4三唑2种未见文献报道的硝基三唑衍生物,其熔点分别为251~252℃,156~157℃,同时改进了2,4,6-三(3-氨基-5-硝基-1,2,4三唑)-1,3,5-均三嗪合成方法,并采用红外光谱、核磁共振光谱、元素分析等对目标化合物进行了结构表征。探讨了3-氨基-5-硝基-1,2,4三唑与2,4,6-三硝基氯苯缩合反应机理,并研究了反应介质、催化剂等关键因素对缩合反应的影响。确定适宜的反应条件为:DMF作为介质,温度70℃,时间8h。  相似文献   

2.
5-氨基-3-硝基-1,2,4-三唑(ANTA)的合成工艺改进   总被引:3,自引:3,他引:3  
以3,5-二氨基-1,2,4-三唑为原料,经重氮化、盐化合成中间体3,5-二硝基-1,2,4-三唑的铵盐(ADNT),用水合肼还原,得到目标产物5-氨基-3-硝基-1,2,4-三唑(ANTA)。采用红外光谱、核磁共振、质谱及元素分析鉴定了ANTA的结构;同时,探索了反应温度对反应收率及纯度的影响,改进了ADNT的萃取及精制方法,提高了产品的纯度(98%以上),反应总收率达64%。  相似文献   

3.
1-氨基-3,5-二硝基-1,2,4-三唑的合成工艺改进及性能   总被引:2,自引:2,他引:0  
以3,5-二氨基-1,2,4-三唑为原料合成出中间体3,5-二硝基-1,2,4-三唑(DNT)钠盐(Ι),用2,4,6-三甲基苯磺酰羟胺(MSH)胺化Ι,得到了目标物1-氨基-3,5-二硝基-1,2,4-三唑(ADNT),收率66%。采用红外、核磁、质谱及元素分析表征了ADNT的结构。确定了较佳的反应条件:室温,摩尔比n(DNT-Na+)∶n(MSH)=1∶1.5,反应时间12 h。采用差示扫描量热法研究了ADNT的热性能,其熔点为128.7℃,分解峰温为225.8℃。按GJB772-1997测试ADNT的撞击感度为H50大于112 cm(落锤2 kg),表明ADTN为性能良好的低感炸药。  相似文献   

4.
5-氨基-3-硝基-1,2,4-三唑的合成及反应性研究进展   总被引:5,自引:5,他引:0  
5-氨基-3-硝基-1,2,4-三唑(ANTA)作为一种钝感炸药:撞击感度大于320 cm(Type12),密度1.819 g.cm-3,爆速约为8460 m.s-1,是一种重要的火箭推进剂。同时ANTA具有-NH、-NH2两个活性位点,可参与烷基化、芳基化、重氮化、氧化、离子化等多种反应。本研究概述了ANTA的结构特点,总结了其合成方法,归纳了以ANTA为基不同位点的相关反应及其一般规律,为合成新型低感高能化合物或高氮含能离子盐提供了参考。  相似文献   

5.
以5-氨基-3-硝基-1,2,4-三唑(ANTA)与4,6-二氯-5-硝基嘧啶(DCNP)为原料,在乙醇介质中进行亲核取代反应合成了4,6-双-(5-氨基-3-硝基-1,2,4-三唑-1-基)-5-硝基嘧啶(DANTNP),采用红外光谱、核磁共振、质谱、元素分析等鉴定其结构;同时,对反应条件进行了优化(反应时间为6h;CH3ONaANTADCNP的摩尔比为2.642.41,反应收率为68%;在体系中加入相转移催化剂18-冠-6-醚后,反应收率达到84%.  相似文献   

6.
1-氨基-2-硝基胍4-硝胺基-1,2,4-三唑盐的合成及性能   总被引:2,自引:2,他引:0  
以1-氨基-2-硝基胍和4-硝胺基-1,2,4-三唑为原料,制备了一种新型含能离子盐——1-氨基-2-硝基胍4-硝胺基-1,2,4-三唑盐,并优化了反应条件。用TG-DSC研究了其热分解行为。结果表明,在反应时间为4h,反应温度为50℃的优化合成条件下,1-氨基-2-硝基胍4-硝胺基-1,2,4-三唑盐的产率最高为86.5%。该化合物在175.5℃左右剧烈分解,显示热稳定性较好。利用BornHaber循环求得该化合物的生成热为551.3kJ·mol-1。测得该化合物的密度为1.59g·cm-3。基于密度和生成热,通过Kamlet-Jacobs公式得到该化合物的爆速和爆压分别为8.05km·s-1和爆压26.6GPa。  相似文献   

7.
以硝基胍和甲醛为原料,经缩合反应、硝化反应、肼解反应和复分解反应,合成了3,5-二硝氨基-1,2,4-三唑铅盐,采用DSC和TG-DTG方法分析了其热性能,并测试了真空安定性、吸湿性、相容性、感度性能、5s爆发点、爆热、爆速等物化性质和爆轰性能。结果表明:3,5-二硝氨基-1,2,4-三唑铅盐的热稳定性、真空安定性以及耐吸湿性良好,与RDX、HMX、太安、特屈儿、铁、铝、铜等材料均相容,撞击感度和摩擦感度较叠氮化铅(LA)和斯蒂芬酸铅(LTNR)钝感,5s爆发点为226~228℃,爆热为2 236J·g~(-1),爆速为5 755 m·s~(-1),有望作为LA和LTNR的替代物使用。  相似文献   

8.
为研究4-氨基-唑并[5,1-c]1,2,4-三嗪化合物的合成机理与性能,以TTX为例,采用密度泛函理论(DFT)研究了1,2,4-三唑并[5,1-c]1,2,4-三嗪类稠环可能的环化机理,研究了体系pH值对环化过程的影响;采用差示扫描量热法研究了TTX的热性能、热分解动力学,并采用BAM撞击感度测试仪测试了TTX的撞击感度.结果表明:5-氨基-3-硝基-1,2,4-三唑(ANTA)的重氮盐与硝基乙腈钠盐偶合中间体的类吡咯氮原子对氰基亲核加成,然后通过芳构化重排得到1,2,4-三唑并[5,1-c]1,2,4-三嗪;TTX的热分解峰温为281.8℃,表观活化能为356.7 kJ·mol-1,高于TATB;撞击感度为60 J,低于RDX.同时研究了TTX与HMX、RDX、Al粉、硝化棉(NC)的相容性,结果表明TTX与Al相容,与HMX有一定相互作用,轻微敏感;RDX、NC会明显促进TTX热分解,混合体系较为敏感,应避免混合使用.  相似文献   

9.
1-三硝甲基-3-硝基-1,2,4-三唑的晶体结构及性能预估   总被引:1,自引:1,他引:0  
殷欣  马卿  王军  王树民 《含能材料》2017,25(5):437-440
为了获得1-三硝甲基-3-硝基-1,2,4-三唑(TNMNT)的晶体结构并对其性能进行预估,以3-硝基-1,2,4-三唑为原料,通过取代、硝化反应合成出了TNMNT,收率为62%,以无水乙醇为溶剂,用溶剂蒸发法培养得到纯的TNMNT单晶,并采用核磁共振谱、红外光谱与X-射线单晶衍射仪进行了结构表征。用DSC-TG法分析了热稳定性。用Gaussian 09 and EXPLO5(V6.02)程序分别计算了生成焓和爆轰参数。结果表明:TNMNT晶体属于单斜晶系,空间群P21/c,晶体参数为a=6.643(3),b=20.494(7),c=6.698(3),β=94.225(9)°,V=909.4(6)3,Z=4,Dc=1.922 g·cm~(-3),μ=0.190 mm~(-1),F(000)=528.0。5℃·min-1升温速率下,TNMNT的热分解峰温为158.3℃。它的标准生成焓为210.9 kJ·mol~(-1),爆速为9023 m·s~(-1),爆压为35.5 GPa。大量分子间和分子内氢键作用的存在使TNMNT分子稳定存在,硝仿基团的引入使TNMNT分子的能量提高。  相似文献   

10.
以1,1'-二羟基-3,3'-二硝基-5,5'-联-1,2,4-三唑(DNOBT)为原料,分别与3-氨基-1,2,4-三唑、草酰肼、二肼基四嗪反应合成了DNOBT的3-氨基-1,2,4-三唑盐(DNOBT-3-AT)、草酰肼盐(DNOBT-ODH)、二肼基四嗪盐(DNOBT-DHT)三种含能离子盐,用红外光谱、核磁及元素分析对其结构进行了表征;培养了DNOBT-3-AT的单晶,X射线衍射分析表明其晶体为单斜晶系,空间群为P2(1)/c;利用Gaussian 09程序和Kamlet-Jacobs方程计算了DNOBT-3-AT、DNOBT-ODH、DNOBT-DHT的物化与爆轰性能,采用差示扫描量热(DSC)研究了这三种化合物的热性能,结果表明,DNOBT-3-AT、DNOBT-ODH、DNOBT-DHT爆速分别为7736.4,7729.56,7974.64 m·s~(-1),爆压分别为26.8,26.74,28.56 GPa;第一个热分解峰温度分别为276.54,257.02,154.15℃,相较于DNOBT-ODH和DNOBT-DHT,DNOBT-3-AT具有更好的热稳定性。  相似文献   

11.
1-甲基-3-氨基-5-硝基-1,2,4-三唑的合成新工艺   总被引:1,自引:1,他引:0  
以甲基肼为原料,与盐酸反应得到盐酸甲基肼,再与二氰二胺在50℃进行缩合环化反应,调节溶液pH值,经重氮化反应合成含能化合物1-甲基-3-氨基-5-硝基-1,2,4-三唑(DNMT),总收率62.3%,纯度99.4%,并用红外光谱、核磁共振、质谱、元素分析等方法表征了其结构。探讨了缩合环化反应工艺条件,确定适宜的反应条件为:溶剂为乙醇,n(C2H3N4)∶n(NH2NHCH3.2HCl)=1∶1.1,pH=8~9,成盐组分是盐酸,重结晶溶剂为丙酮。  相似文献   

12.
以含能化合物3,4?二氨基?5?(3,4?二氨基?1,2,4?三唑?5?基)?1,2,4?三唑(化合物1)为有机碱,分别与高氯酸和硝酸进行中和反应,合成了两种具有高热稳定性的含能离子盐:3,4?二氨基?5?(3,4?二氨基?1,2,4?三唑?5?基)?1,2,4?三唑高氯酸盐(化合物2),3,4?二氨基?5?(3,4?二氨基?1,2,4?三唑?5?基)?1,2,4?三唑硝酸盐(化合物3)。首次培养了化合物2和3的单晶,并采用单晶X射线衍射进行晶体结构解析;化合物2的晶体结构中,每个阳离子和12个相邻的高氯酸根通过氢键作用相互连接,阳离子形成层状堆积,高氯酸根阴离子镶嵌在层与层之间;化合物3的晶体结构中,每个阳离子和10个相邻的硝酸根通过氢键作用相互连接,从而构筑化合物3的层状堆积结构。采用差示扫描量热仪(DSC)和热重分析仪(TG)研究了化合物2和3的热稳定性,化合物2和3具有超高的热稳定性,其热分解温度分别为338.3℃和289.8℃。此外,化合物2的理论爆速和比冲分别为8308 m·s-1和250.3 s,表现出优异的能量特征;化合物3具有优异的感度特性,其撞击感度和摩擦感度分别高于20 J和360 N。  相似文献   

13.
以氨基胍碳酸氢盐与丙二酸为原料,经缩合-环化反应、重氮化-取代反应、氧化偶联反应和硝化反应分别合成出5-硝基-3-三硝甲基-1H-1,2,4-三唑(TNNT)和5,5'-双(三硝甲基)-3,3'-偶氮-1H-1,2,4-三唑(BTNAT)。用红外光谱、核磁共振、元素分析表征了它们的结构。进行了B3LYP/6-31G(d,p)基组水平下它们的全结构优化和自然键轨道(NBO)分析。用DSC测定了它们的分解温度。结果表明,10℃·min~(-1)升温速率,氮气气氛条件下,TNNT和BTNAT的分解温度分别为135℃和146℃。  相似文献   

14.
新型异呋咱类含能材料NOG的热行为   总被引:2,自引:2,他引:0  
付占达  王阳  陈甫雪 《含能材料》2012,20(5):583-586
二氨基甘脲经体系中原位制备的二甲基过氧化酮(DMDO)氧化,制备了新型含能化合物3-硝基-5-胍基-1,2,4-噁二唑(NOG)。用扫描电镜(SEM)表征了NOG的微观形貌。用差示扫描量热法(DSC)和TG-DTA研究了NOG的热分解行为。计算了NOG放热分解反应的表观活化能、指前因子,加热速率趋于零的峰值温度(TP0)和TP0时该反应的活化熵(ΔS≠)、活化焓(ΔH≠),活化吉布斯自由能(ΔG≠)及热爆炸临界温度(Tb)。结果表明,NOG有较好的对热抵抗能力,其热分解温度为290℃,临界爆炸温度为291.56℃。其ΔS≠为232.35J·k-1·mol-1,ΔH≠和ΔG≠分别为267.36和138.42kJ·mol-1。  相似文献   

15.
3-硝基-1,2,4-三唑酮-5盐的研究概述   总被引:8,自引:4,他引:4  
李加荣 《含能材料》1999,7(1):11-15
概述了3-硝基-1,2,4三肉酮-5(NTO)盐的制备方法、结构、性能和应用。  相似文献   

16.
3-硝基-1,2,4-三唑-5-酮铅盐合成   总被引:1,自引:0,他引:1  
李战雄  唐松青 《含能材料》2004,12(2):122-123
将3-硝基-1,2,4-三唑-5-酮及其铅盐的合成放大至百克级,利用分段升温,减少硝化剂用量合成NTO时硝化得率达81.8%。  相似文献   

17.
The 3-Nitro-1,2,4-triazole-5-one (NTO) is a high energydensity materials of keen interest for both commercial and scientific worlds owing to its reduced sensitivity, better thermal stability and high performances. It plays a significant role to replace the current energetic ingredients. In this review, we summarize various strategies involved in the synthesis of NTO as well as the existing approaches to tailor its particle morphology and sizes. The most prominent properties of NTO, such as insensitivity and performance, which are usually required to produce efficient formulations,have been concisely discussed. In addition, this overview reports on some newer forms of NTO including derivatives and co-crystals available inthe literature, which can enhance the NTO features and extend its applications. The advantages and shortcomings of various NTO forms for specific and potential use are also highlighted together with the attempts made to overcome these issues. Therefore, efforts will certainly continue to improve characteristics and performances of NTO either by chemical modification or by co-crystallization in order to produce promisingformulations for widespread applications in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号