首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silicon carbide (SiC) ceramic has been widely used in modern industry because of its superior mechanical properties, wear, and corrosion resistance even at elevated temperature. However, the manufacture of SiC ceramic is not an efficient process by conventional machining methods. This paper employs a steel-toothed wheel as the tool electrode to machine SiC ceramic using electric discharge milling. The process is able to effectively machine a large surface area on SiC ceramic. To further improve the process performance, three kinds of emulsion are proposed as the dielectric in this paper. The effects of dielectric, tool polarity, pulse duration, pulse interval, peak voltage, and peak current on the process performance such as the material removal rate (MRR) and surface roughness (SR) have been investigated. Furthermore, the microstructure of the machined surface is examined with a scanning electron microscope (SEM), an energy-dispersive spectrometer (EDS), and X-ray diffraction (XRD).  相似文献   

2.
A novel hybrid process that integrates end electric discharge (ED) milling and mechanical grinding is proposed. The process is able to effectively machine a large surface area on SiC ceramic with good surface quality and fine working environmental practice. The polarity, pulse on-time, and peak current are varied to explore their effects on the surface integrity, such as surface morphology, surface roughness, micro-cracks, and composition on the machined surface. The results show that positive tool polarity, short pulse on-time, and low peak current cause a fine surface finish. During the hybrid machining of SiC ceramic, the material is mainly removed by end ED milling at rough machining mode, whereas it is mainly removed by mechanical grinding at finish machining mode. Moreover, the material from the tool can transfer to the workpiece, and a combination reaction takes place during machining.  相似文献   

3.
This paper presents a novel hybrid machining process (HMP) that combines cutting action with machining using discharge pulses. Working conditions for a machine tool capable of combining micro-electro discharge machining (EDM) with milling is still an ill-defined problem relying on heuristics because there is insufficient knowledge of the discharge mechanism and the effects of machining parameters. The proposed HMP that combines micro-EDM and milling processes was applied to a steel alloy (AISI 1045) as the workpiece and end mill tungsten carbide as the tool electrode. Test results obtained from a number of experiments showed that the developed HMP yields reasonable machining time and surface roughness. Significant controlling variables for the machining response were identified and ranked using the Taguchi method. Furthermore, the response surface method was used to develop an empirical model based on the correlation between input variables and output responses.  相似文献   

4.
Electrical discharge machining (EDM) is the extensively used nonconventional material removal process for machining engineering ceramics provided they are electrically conductive. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics that can be machined effectively by EDM. This paper investigates the effects of the electrical resistivity and the EDM parameters on the EDM performance of ZnO/Al2O3 ceramic in terms of the machining efficiency and the quality. The experimental results showed that the electrical resistivity and the EDM parameters such as pulse on-time, pulse off-time, and peak current had the great influence on the machining efficiency and the quality during electrical discharge machining of ZnO/Al2O3 ceramic. Moreover, the electrical resistivity of the ZnO/Al2O3 ceramic, which could be effectively machined by EDM, increased with increasing the pulse on-time and peak current and with decreasing the pulse off-time, respectively. Furthermore, the ZnO/Al2O3 ceramic with the electrical resistivity up to 3,410 Ω cm could be effectively machined by EDM with the appropriate machining condition.  相似文献   

5.
Abstract

Electric Discharge Milling Machining (EDMM) simplifies the electrode manufacturing process and reduces the cost. However, the introducing of new parameters, such as the three-dimensional motion and the electrode rotation speed, results in a periodic change of control state that can reduce the control performance and processing efficiency. In this work, ultrasonic vibration of tool electrode was used to improve the processing efficiency of ceramic materials. The effect of ultrasonic vibration on the EDMM process was analyzed by comparing the experimental findings. The results have shown that the ultrasonic vibration can improve the material removal rate, and a treble processing efficiency was achieved. The effect of processing parameters on the material removal rate, such as the open voltage, the peak current, the pulse during time and the pulse off time, was analyzed. When aided with the ultrasonic vibration, the best processing efficiency was achieved at 220?V for the open voltage, 10?A for the peak current and 15?μs for both the pulse during time and pulse off time.  相似文献   

6.
This paper discusses an experimental approach to assess the machining characteristics in microscale end milling operation through a systematic experimentation procedure. Microchannels were machined on brass plates using a carbide end mill of 1?mm diameter to analyze the effect of chip load (feed per tooth) and cutting speed on the surface roughness, specific cutting pressure, and cutting forces during microend milling operation. The tangential and radial components of forces were analyzed with the help of a three-dimensional model using the force signals acquired through KISTLER dynamometer. Feed per tooth and the interaction of cutting speed and chip load were identified as the critical parameters affecting the surface roughness of microchannel. Applying the concept of elastic recovery on the side wall surface of microchannels, the minimum chip thickness during the above micromilling operation was evaluated as 0.97???m, and the result was validated by the drastic increase in specific cutting pressure and erratic behavior of cutting forces below a chip load of 1???m.  相似文献   

7.
The selection of optimum machining conditions, during wire electric discharge machining process, is of great concern in manufacturing industries these days. The increasing quality demands, at higher productivity levels, require the wire electric discharge machining process to be executed more efficiently. Specifically, the material removal rate needs to be maximized while controlling the surface quality. Despite extensive research on wire electric discharge machining process, determining the desirable operating conditions in industrial setting still relies on the skill of the operators and trial-and-error methods. In the present work, an attempt has been made to optimize the machining conditions for maximum material removal rate and maximum surface finish based on multi-objective genetic algorithm. Experiments, based on Taguchi’s parameter design, were carried out to study the effect of various parameters, viz. pulse peak current, pulse-on time, pulse-off time, wire feed, wire tension and flushing pressure, on the material removal rate and surface finish. It has been observed that a combination of factors for optimization of each performance measure is different. So, mathematical models were developed between machining parameters and responses like metal removal rate and surface finish by using nonlinear regression analysis. These mathematical models were then optimized by using multi-objective optimisation technique based on Non-dominated Sorting Genetic Algorithm-II to obtain a Pareto-optimal solution set.  相似文献   

8.
Abstract

The C/SiC ceramic matrix composites are widely used for high-value components in the nuclear, aerospace and aircraft industries. The cutting mechanism of machining C/SiC ceramic matrix composites is one of the most challenging problems in composites application. Therefore, the effects of machining parameters on the machinability of milling 2.5D C/SiC ceramic matrix composites is are investigated in this article. The related milling experiments has been carried out based on the C/SiC ceramic matrix composites fixed in two different machining directions. For two different machining directions, the influences of spindle speed, feed rate and depth of cut on cutting forces and surface roughness are studied, and the chip formation mechanism is discussed further. It can be seen from the experiment results that the measured cutting forces of the machining direction B are greater than those of the in machining direction A under the same machining conditions. The machining parameters, which include spindle speed, feed rate, depth of cut and machining direction, have an important influence on the cutting force and surface roughness. This research provides an important guidance for improving the machining efficiency, controlling and optimizing the machined surface quality of C/SiC ceramic matrix composites in the milling process.  相似文献   

9.
Ceramic matrix composites (CMC) are considered the next generation of advanced materials used in space and aviation due to their high-temperature strength, creep resistance, chemical resistance, low porosity, and low density. However, these materials are difficult to process owing to the large cutting force and high cost on tool consumption. electrical discharge machining (EDM), featured by the negligible machining force and acceptable tooling cost, is a potential nontraditional machining technique for CMC. In this paper, EDM was used to process a new class of advanced CMC, that is, those with continuous ceramic fiber reinforcements. The challenge is its low material removal rate (MRR) due to the low workpiece conductivity and debris evacuation efficiency. Electrode vibration and dielectric deep flushing were used to promote debris evacuation, and an increase of MRR and surface quality without sacrificing tool wear ratio was observed. Gap voltage, peak current, pulse duration, and duty ratio were studied using design of experiments for deeper understanding of the process. The effect of these parameters was investigated, and an analysis of variance was conducted. The optimal condition was also predicted and experimentally validated. It was found that a high gap voltage or low duty ratio leads to a high machining rate due to improved debris evacuation efficiency. The material removal mechanism was found to be cracking due to thermal expansion of the matrix and breakage of the nonconductive fibers.  相似文献   

10.
以电火花多电极加工3Cr13模具型腔为研究对象,以提高材料去除率和降低电极损耗为目标,对负极性标准切入加工时不同电极材料的电火花加工性能(加工效率、电极损耗)进行研究,设计并进行了不同工艺参数下紫铜电极和Cu50W铜钨合金电极加工试验,获得了不同条件下的材料去除率和电极相对损耗参数,并对多电极电火花加工工艺及经济性进行了分析,结果表明:相同工艺参数下,加工性能因电极材料热学性能不同而不同,Cu50W铜钨合金的材料去除率约为紫铜的85.7%,而电极相对损耗约为紫铜的42.9%,从而为电火花加工不锈钢模具材料的电极选择提供了理论依据.  相似文献   

11.
Journal of Mechanical Science and Technology - A dielectric fluid plays a significant role on the machining efficiency of Electric discharge machining (EDM). Two phase (liquid-air) dielectric...  相似文献   

12.
13.
14.
整体涡轮电火花加工方法的研究   总被引:3,自引:0,他引:3  
主要探讨了采用直柄电极加工弯扭叶片整体涡轮时所遇到的诸如加工误差补偿,电极设计、相邻切削带宽度计算和电极运动轨迹确定等关键技术及其解决方案。  相似文献   

15.
基于加工仿真的立铣刀三维参数化设计   总被引:2,自引:0,他引:2  
金晓波  康万军  曹军  丁国富 《机械》2010,37(6):50-52
基于CATIA软件平台进行二次开发,开发出基于加工仿真的高速立铣刀三维参数化设计的CAD软件系统。设计人员输入立铣刀的使用参数和主要结构参数,根据系统的数据库和相关程序自动生成立铣刀的三维CAD模型以及加工立铣刀的砂轮刀位轨迹及NC代码,调用VERICUT软件进行立铣刀磨削加工仿真,从而保证立铣刀参数化设计的三维模型的可加工性,保证刀具设计的质量和缩短刀具设计和制造周期。  相似文献   

16.
影响电火花加工进程的因素分析   总被引:2,自引:0,他引:2  
通过分析电火花加工机理,论述了电火花成型加工中电参数、工业速度、工作液、电极材料等主要过程影响因素,并探讨了EDM加工对工具钢的影响以及改善措施。  相似文献   

17.
以电极间隙电场分布为研究对象,通过求解拉普拉斯方程,推导得到了均匀电场中,微粒周围电场强度分布的解析表达式。通过数值仿真计算,得到了受电极尖角、微粒影响的电场分布云图。从解析计算和数值仿真计算两个方面分析了最大电场强度与电极间隙、微粒介电系数、微粒直径的关系。通过对两种计算方法得到的结果进行对比,找出了解析计算与数值计算结果存在误差的原因。  相似文献   

18.
针对非导电硬脆材料的微细线切割加工,设计并搭建了电化学放电线切割加工装置,对电化学放电线切割加工过程中的电压-电流曲线与电极丝放电长度之间的关系进行了实验研究。实验结果表明,随着直流电压的增大,电压-电流曲线呈现出线性区、饱和区、跃变区和放电区等明显的区域性特征变化,稳定放电仅在电压高于一定值的放电区内发生,且电极丝放电长度越大,发生跃变放电时的临界电压越高。对普通玻璃和石英玻璃的加工实验表明,通过增大放电能量,能够获得更高的材料去除率,但也会导致工件加工精度和表面质量的下降。  相似文献   

19.
The relevance, importance and presence of industrial robots in manufacturing have increased over the years, with applications in diverse new and nontraditional manufacturing processes. This paper presents the complete concept and design of a novel friction stir welding (FSW) robotic platform for welding polymeric materials. It was conceived to have a number of advantages over common FSW machines: it is more flexible, cheaper, easier and faster to setup and easier to programme. The platform is composed by three major groups of hardware: a robotic manipulator, a FSW tool and a system that links the manipulator wrist to the FSW tool (support of the FSW tool). This system is also responsible for supporting a force/torque (F/T) sensor and a servo motor that transmits motion to the tool. During the process, a hybrid force/motion control system adjusts the robot trajectories to keep a given contact force between the tool and the welding surface. The platform is tested and optimized in the process of welding acrylonitrile butadiene styrene (ABS) plates. Experimental tests proved the versatility and validity of the proposed solution.  相似文献   

20.
In this study, experiments were conducted to examine the effects of polishing parameters such as polishing time, load, rotational speed, diamond size, and concentration when polishing ceramic blocks. It was shown that the material removal rate rises with the increase in polishing time from 20 to 30 min, but drops with the increase from 30 to 40 min. The material removal rate increases with an increase in the load, rotational speed, diamond size, and concentration, respectively. Within the range examined, the surface roughness improves with a longer polishing time, higher rotational speed, smaller diamond size, and lower concentration. The parallelism is highly dependent on the material removal rate. Three main failure mechanisms: cracks, deep pits, and fractures were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号