首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Postbuckling of plates and shells is an important and cumbersome problem in the structural stability field. Presently, postbuckling behaviors of elastoplastic functionally graded cylindrical shells are investigated by a numerical simulation. The elastoplastic material properties are assumed to be of a multilinear hardening type, according to the constituent distributions, and are modeled using the laminate method. The Riks algorithm is used to obtain the equilibrium path. The postbuckling deformation and stain history of elastoplastic functionally graded cylindrical shells are investigated and various effects of the shell thickness and the constituent distributions are discussed. The results show material unloading effects in the postbuckling state.  相似文献   

2.
压电梯度薄壳的高阶理论解   总被引:2,自引:2,他引:0       下载免费PDF全文
压电功能梯度执行器能产生较大的位移、降低应力峰值并避免了粘结层带来的问题,压电梯度超声换能器能拓展频带宽度。本文作者提出了一个简单而有效的求解压电梯度薄壳力、电行为特性的高阶理论。设定位移分量为壳厚的线性函数,而电势沿厚度方向为二次分布。考虑了压电作动元的驱动信号不同时所具有的不同形式的电荷平衡方程。应用Fourier级数法得到压电系数沿厚度坐标变化的梯度壳的力电耦合的解析解。所得结果可退化至梁、板等多种特殊情况。利用所得方程分析了一非均匀简支压电层合板,并与三维精确结果作了对比,两者吻合得很好,表明该理论的正确性。最后具体求解了压电梯度圆柱壳的力、电特性,给出了位移、应力、电势沿厚度方向的变化规律。  相似文献   

3.
This paper is presented to solve the nonlinear dynamic buckling problem of a new type of composite cylindrical shells, made of ceram/metal functionally graded materials. The material properties vary smoothly through the shell thickness according to a power law distribution of the volume fraction of the constituent materials. The dynamic axial load is set in a linear increase form with regard to time. By taking the temperature-dependent material properties into account, the effect of environmental temperature rise is included. The nonlinear dynamic equilibrium equation of the shell was obtained by applying an energy method, and was then solved using the four-order Runge–Kutta method. The critical condition was eventually determined using B-R dynamic buckling criterion. Numerical results show the dynamic buckling load is higher than its static counterpart. Meanwhile, various effects of the inhomogeneous parameter, loading speed, dimension parameter, environmental temperature rise and initial geometrical imperfection on nonlinear dynamic buckling are discussed.  相似文献   

4.
Summary. In this paper, an analytic solution is provided for the postbuckling behavior of plates and shallow cylindrical shells made of functionally graded materials under edge compressive loads and a temperature field. The material properties of the functionally graded shells are assumed to vary continuously through the thickness of the shell according to a power law distribution of the volume fraction of the constituents. The fundamental equations for thin rectangular shallow shells of FGM are obtained using the von Karman theory for large transverse deflection, and the solution is obtained in terms of mixed Fourier series. The effect of material properties, boundary conditions and thermomechanical loading on the buckling behavior and stress field are determined and discussed. The results reveal that thermomechanical coupling effects and the boundary conditions play a major role in dictating the response of the functionally graded plates and shells under the action of edge compressive loads.  相似文献   

5.
The free vibration analysis of rotating functionally graded (FG) cylindrical shells subjected to thermal environment is investigated based on the first order shear deformation theory (FSDT) of shells. The formulation includes the centrifugal and Coriolis forces due to rotation of the shell. The material properties are assumed to be temperature-dependent and graded in the thickness direction. The initial thermo-mechanical stresses are obtained by solving the thermoelastic equilibrium equations. The equations of motion and the related boundary conditions are derived using Hamilton’s principle. The differential quadrature method (DQM) as an efficient and accurate numerical tool is adopted to discretize the thermoelastic equilibrium equations and the equations of motion. The convergence behavior of the method is demonstrated and comparison studies with the available solutions in the literature are performed. Finally, the effects of angular velocity, Coriolis acceleration, temperature dependence of material properties, material property graded index and geometrical parameters on the frequency parameters of the FG cylindrical shells with different boundary conditions are investigated.  相似文献   

6.
Considering rotary, in-plane inertias, and fluid velocity potential, the dynamic characteristics of fluid-conveying functionally graded materials (FGMs) cylindrical shells subjected to dynamic mechanical and thermal loads are investigated, where material properties of FGM shells are considered as graded distribution across the shell thickness according to a power-law, and dynamic thermal loads applied on the shell is considered as non-linear distribution across the thickness of the shell. The linear response characteristics of fluid-conveying FGM cylindrical shells are obtained by using modal superposition and Newmark’s direct time integration method.  相似文献   

7.
In this study, the mechanical buckling of functionally graded material cylindrical shell that is embedded in an outer elastic medium and subjected to combined axial and radial compressive loads is investigated. The material properties are assumed to vary smoothly through the shell thickness according to a power law distribution of the volume fraction of constituent materials. Theoretical formulations are presented based on a higher-order shear deformation shell theory (HSDT) considering the transverse shear strains. Using the nonlinear strain–displacement relations of FGMs cylindrical shells, the governing equations are derived. The elastic foundation is modelled by two parameters Pasternak model, which is obtained by adding a shear layer to the Winkler model. The boundary condition is considered to be simply-supported. The novelty of the present work is to achieve the closed-form solutions for the critical mechanical buckling loads of the FGM cylindrical shells surrounded by elastic medium. The effects of shell geometry, the volume fraction exponent, and the foundation parameters on the critical buckling load are investigated. The numerical results reveal that the elastic foundation has significant effect on the critical buckling load.  相似文献   

8.
This paper deals with the problem of functionally graded (FG) cylindrical shells subjected to low-velocity impact by a solid striker. An analytic solution to predict the impact response of the FG cylindrical shells with one layer or multi-layers is presented. The solution includes both contact deformation and transverse shear deformation. The effective material properties of functionally graded materials (FGMs) for the cylindrical shells are assumed to vary continuously through the shell thickness and are graded in the shell thickness direction according to a volume fraction power law distribution. This is implemented in the governing equation of motion and thus included in the present solution. Four types of FG cylindrical shells composed of stainless steel and silicon nitride are configured and their transient responses to impact are computed using the present solution. The effects of the constituent volume fraction and the FGM configuration on the transient response of the laminated cylindrical shell induced by impact are examined.  相似文献   

9.
This paper is presented to solve the nonlinear buckling and post-buckling problem of functionally graded stiffened thin circular cylindrical shells only under torsion by the analytical approach. The shells are reinforced by rings and stringers attached to their inside and the material properties of shell and the stiffeners are assumed to be continuously graded in the thickness direction. Theoretical formulations based on the smeared stiffeners technique and the classical shell theory with the geometrical nonlinearity in von Karman sense are derived. Approximate three-term solution of deflection is chosen more correctly and the explicit expression to finding critical load and post-buckling torsional load–deflection curves are given. The effects of various parameters and the effectiveness of stiffeners on the stability of shell are shown.  相似文献   

10.
Dynamic buckling of functionally graded materials truncated conical shells subjected to normal impact loads is discussed in this paper. In the analysis, the material properties of functionally graded materials shells are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. Geometrically nonlinear large deformation and the initial imperfections are taken into account. Galerkin procedure and Runge–Kutta integration scheme are used to solve nonlinear governing equations numerically. From the characteristics of dynamic response obtain critical loads of the shell according to B-R criterion. From the research results it can be found that gradient properties of the materials have significant effects on the critical buckling loads of FGM shells.  相似文献   

11.
A postbuckling analysis is presented for nanocomposite cylindrical shells reinforced by single-walled carbon nanotubes (SWCNTs) subjected to axial compression in thermal environments. Two kinds of carbon nanotube-reinforced composite (CNTRC) shells, namely, uniformly distributed (UD) and functionally graded (FG) reinforcements, are considered. The material properties of FG-CNTRCs are assumed to be graded in the thickness direction, and are estimated through a micromechanical model. The governing equations are based on a higher order shear deformation theory with a von Kármán-type of kinematic nonlinearity. The thermal effects are also included and the material properties of CNTRCs are assumed to be temperature-dependent. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of axially-loaded, perfect and imperfect, FG-CNTRC cylindrical shells under different sets of thermal environmental conditions. The results for UD-CNTRC shell, which is a special case in the present study, are compared with those of the FG-CNTRC shell. The results show that the linear functionally graded reinforcements can increase the buckling load as well as postbuckling strength of the shell under axial compression. The results reveal that the CNT volume fraction has a significant effect on the buckling load and postbuckling behavior of CNTRC shells.  相似文献   

12.
This paper describes a general formulation for free, steady-state and transient vibration analyses of functionally graded shells of revolution subjected to arbitrary boundary conditions. The formulation is derived by means of a modified variational principle in conjunction with a multi-segment partitioning procedure on the basis of the first-order shear deformation shell theory. The material properties of the shells are assumed to vary continuously in the thickness direction according to general four-parameter power-law distributions in terms of volume fractions of the constituents. Fourier series and polynomials are applied to expand the displacements and rotations of each shell segment. The versatility of the formulation is demonstrated through the application of the following polynomials: Chebyshev orthogonal polynomials, Legendre orthogonal polynomials, Hermite orthogonal polynomials and power polynomials. Numerical examples are given for the free vibrations of functionally graded cylindrical, conical and spherical shells with different combinations of free, shear-diaphragm, simply-supported, clamped and elastic-supported boundary conditions. Validity and accuracy of the present formulation are confirmed by comparing the present solutions with the existing results and those obtained from finite element analyses. As to the steady-state and transient vibration analyses, functionally graded conical shells subjected to axisymmetric line force and distributed surface pressure are investigated. The effects of the material power-law distribution, boundary condition and duration of blast loading on the transient responses of the conical shells are also examined.  相似文献   

13.
In the present work, a study of free vibrations of functionally graded cylindrical shells made up of isotropic properties is carried out. A semi-analytical axisymmetric finite element model using the 3D linear elastic theory is developed. The 3D equations of motion are reduced to 2D by expanding the displacement field in Fourier series in the circumferential direction, involving circumferential harmonics. The material properties are graded in the thickness direction according to a power law. The model has been verified with simple benchmark problems and the results show that the frequency characteristics are found to be close to published results of isotropic cylindrical shells. New results are included for FGM shells.  相似文献   

14.
In this paper, buckling behaviors of composite cylindrical shells made from functionally graded materials (FGMs) subjected to pure bending load were investigated. The material properties were assumed to be graded along the thickness. The non-uniform bending force on the shell section was considered in the buckling government equation of FGM cylindrical shells based on the Donnell shallow shell theory. The prebuckling deformation of the FGM cylindrical shells was neglected and the buckling mode was assumed to occur non-uniformly in local district along the shell circumferential direction. The eigenvalue method was used to obtain the buckling critical condition. The theoretical results were in excellent agreement with those of ABAQUS code. Results show that the inhomogenity of the materials is significant for buckling of FGM cylindrical shells.  相似文献   

15.
A postbuckling analysis is presented for a functionally graded cylindrical thin shell of finite length subjected to compressive axial loads and in thermal environments. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The governing equations are based on the classical shell theory with von Kármán–Donnell-type of kinematic nonlinearity. The nonlinear prebuckling deformations and initial geometric imperfections of the shell are both taken into account. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of functionally graded cylindrical shells. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling response of axially-loaded, perfect and imperfect, cylindrical thin shells with two constituent materials and under different sets of thermal environments. The effects played by temperature rise, volume fraction distribution, shell geometric parameter, and initial geometric imperfections are studied.  相似文献   

16.
In this study, the stability analysis of functionally graded material (FGM) cylindrical, truncated and complete conical shells subjected to combined loads and resting on elastic foundations for two boundary conditions is investigated. The functionally graded material properties are assumed to vary continuously through the thickness of the conical shell. At first, the basic relations, the stability and compatibility equations of the FGM truncated conical shell on the Pasternak-type elastic foundation are obtained. By applying the Galerkin method to the foregoing equations, the critical combined loads of clamped–clamped and sliding–sliding FGM shells on the Pasternak-type elastic foundation are obtained. Finally, carrying out some computations, effects of the elastic foundation, boundary conditions, the variation of shell characteristics and material composition profiles on the values of critical combined loads have been studied.  相似文献   

17.
The main aim of this paper is to investigate the nonlinear buckling and post-buckling of functionally graded stiffened thin circular cylindrical shells surrounded by elastic foundations in thermal environments and under torsional load by analytical approach. Shells are reinforced by closely spaced rings and stringers in which material properties of shell and the stiffeners are assumed to be continuously graded in the thickness direction. The elastic medium is assumed as two-parameter elastic foundation model proposed by Pasternak. Based on the classical shell theory with von Karman geometrical nonlinearity and smeared stiffeners technique, the governing equations are derived. Using Galerkin method with three-term solution of deflection, the closed form to find critical torsional load and post-buckling load–deflection curves are obtained. The effects of temperature, stiffener, foundation, material and dimensional parameters are analyzed.  相似文献   

18.
Three-dimensional nonlinear thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers under the effect of asymmetric thermo-electro-mechanical loads is carried out. The strain–displacement relations are based on the nonlinear Lagrangian strain–displacement relations; that is, nonlinear terms containing derivatives of the displacement in the radial direction are included. Material properties of the shell are assumed to be graded in the radial direction according to a power law but the Poisson’s ratio is assumed to be constant. Cylindrical shells are assumed to be under the effect of pressure loading in cosine form, ring pressure loads, electric and temperature fields. Numerical results of stress, displacement, electric and thermal fields are obtained by using two versions of the differential quadrature methods, namely polynomial and Fourier quadrature methods. The convergence of the solution is studied, and results of the axisymmetric loadings are verified with reported results for a cylindrical shell with material properties obeying a power law. Effects of the grading index of material properties, the temperature difference, the ratio of the mean radius to the thickness of the shell, boundary conditions, the thickness of piezoelectric layers and electric excitation on stress, displacement, electric and temperature fields are presented.  相似文献   

19.
A postbuckling analysis is presented for a functionally graded cylindrical shell with piezoelectric actuators subjected to lateral or hydrostatic pressure combined with electric loads in thermal environments. Heat conduction and temperature-dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform distribution over the shell surface and varied in the thickness direction and the electric field considered only has non-zero-valued component EZ. The material properties of functionally graded materials (FGMs) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and the material properties of both FGM and piezoelectric layers are assumed to be temperature-dependent. The governing equations are based on a higher order shear deformation theory with a von Kármán–Donnell-type of kinematic nonlinearity. A boundary layer theory of shell buckling is extended to the case of FGM hybrid laminated cylindrical shells of finite length. A singular perturbation technique is employed to determine the buckling pressure and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of pressure-loaded, perfect and imperfect, FGM cylindrical shells with fully covered piezoelectric actuators under different sets of thermal and electric loading conditions. The results reveal that temperature dependency, temperature change and volume fraction distribution have a significant effect on the buckling pressure and postbuckling behavior of FGM hybrid cylindrical shells. In contrast, the control voltage only has a very small effect on the buckling pressure and postbuckling behavior of FGM hybrid cylindrical shells.  相似文献   

20.
Accurate zigzag theory is presented for static and free vibration analysis of multilayered functionally graded material (FGM) cylindrical shells and rectangular plates by approximating inplane displacements as a combination of linear layerwise and cubic global terms. Governing equations of motion are derived using Hamilton’s principle. The theory yields accurate results for displacements, stresses and natural frequencies in simply-supported functionally graded multilayered cylindrical shell panels and rectangular plates. Effect of changing the volume fraction ratio, aspect ratio and thickness of FGM layer between two homogeneous layers are investigated for a number of multilayered shell and plate laminates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号