首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Continuous reaction crystallization of struvite MgNH4PO4·6H2O from diluted aqueous solution containing phosphate(V) ions of concentration 0.20 wt% PO43− was investigated experimentally. The tests were carried out in a continuous DT MSMPR type crystallizer in temperature 298 K assuming 20% excess of magnesium ions at the inlet point in respect to struvite synthesis reaction stoichiometry. Influence of pH (8.5–10) and mean residence time of suspension in a crystallizer (900–3600 s) on the product crystals size distribution, their size-homogeneity and process kinetics were identified. Crystals of mean size from ca. 19 to ca. 73 μm, of diverse size-homogeneity (CV 60–87%) were produced. Struvite particles of the largest sizes and acceptable homogeneity were produced at pH 8.5 for prolonged mean residence time 3600 s. Under these conditions struvite nucleation rate did not exceed 5.3 × 107 l/(s m3) according to SIG MSMPR model predictions. Crystal linear growth rate within the investigated process parameter values varied from 3.62 × 10−9 to 1.68 × 10−8 m/s. Magnesium ions excess in a process environment influenced yield of continuous reaction crystallization of struvite advantageously – contrary to product crystals quality. Concentration of phosphate(V) ions in mother solution decreased from inlet 0.20 wt% to 0.9 × 10−3 – 9.2 × 10−3 wt% (9–92 mg/kg) depending on pH and mean residence time of suspension in a crystallizer, what can be regarded as a very good result of their recovering from solution.  相似文献   

2.
Eutectic freeze crystallization was tested in a scaled up version of a scraped cooled wall crystallizer on an industrial aqueous sodium carbonate–sodium bicarbonate waste stream containing traces of molybdenum. A heat transfer rate of 5 kW m−2 was maintained in the crystallizer. Sodium carbonate decahydrate with molybdenum content below 1 ppm and pure ice were produced by continuous crystallization at −3.8 °C by operating within the metastable zone width of bicarbonate. At −4.0 °C bicarbonate started to co-crystallize. The bimodal size distribution of the mixture resulted in poor filtration and purity of the salt product.  相似文献   

3.
This study investigated the effect of a specific adsorption ion, copper (II) ion, on the kinetics of the charge transfer reaction at a LiMn2O4 thin film electrode/aqueous solution (1 mol dm−3 LiNO3) interface. The zeta potential of LiMn2O4 particles showed a negative value in 1 × 10−2 mol dm−3 LiNO3 aqueous solution, while it was measured as positive in the presence of 1 × 10−2 mol dm−3 Cu(NO3)2 in the solution. The presence of copper (II) ions in the solution increased the charge transfer resistance, and CV measurement revealed that the lithium insertion/extraction reaction was retarded by the presence of small amount of copper (II) ions. The activation energy for the charge transfer reaction in the solution with Cu(NO3)2 was estimated to be 35 kJ mol−1, which was ca. 10 kJ mol−1 larger than that observed in the solution without Cu(NO3)2. These results suggest that the interaction between the lithium ion and electrode surface is a factor in the kinetics of charge transfer reaction.  相似文献   

4.
In this study, a high performance and solar regenerable cathodic electron acceptor, I3, was incorporated into a microbial fuel cell (MFC). Linear sweep voltammetry showed that a current density of 4.2 mA cm−2 can be obtained from the electroreduction of I3. This value was approximately twice that of ferricyanide (Fe(CN)63−) and was independent of the pH of the electrolyte. The effect of regeneration conditions, such as the pH of the KI solution, KI concentration, oxygen flow rate and the Xe light intensity, on the I3 yield and performance of the MFC was investigated. A sufficient supply of I3 was achieved when the concentration of an air-saturated KI solution was greater than 0.2 M and its pH was around 2.0, under an irradiation higher than 300 mW cm−2. Extended operation of the MFC showed that I3 is capable of supporting the MFC for long-term electricity generation. The maximum power output of the MFC using a catholyte containing 1.2 mM I3 + 0.2 M KI solution was 484.0 mW m−2. This performance was greater than that (307.1 mW m−2) when using a catholyte containing 1.2 mM Fe(CN)63− + 0.2 M KCl solution under the same conditions.  相似文献   

5.
Enhanced performance of a macroporous disk alumina support was fabricated through colloidal filtration route, by using α-Al2O3 powder with an average particle size of 1.1 μm. The support, sintered at 1250 °C, showed relative high permeances towards water (101 L h−1 m−2 bar−1) and nitrogen (∼2×10−6 mol m−2 s−1 Pa−1), with an average surface roughness of ∼175 nm and a high mechanical strength of 61.1 MPa. Titania supported γ-Al2O3 mesoporous layers were deposited onto this promising disk α-Al2O3 support through dip-coating. The disk membrane A1100/TiO2/γ-Al2O3, with pore size of ca. 4.4 nm, showed a pure water flux as high as 4.5 L m−2 h−1 bar−1, which is four times higher than that of γ-Al2O3 membrane reported in literature. This mesoporous membrane showed relative high retention rate (∼80%) towards di-valent cations like Ca2+, Mg2+, but not for the mono-valent cation (Na+).  相似文献   

6.
A low pressure plasma process working at 600-800 Pa was used to deposit from aqueous solution ZrO2-4 mol% Y2O3 (Yttria partially stabilized Zirconia-YpSZ) layers and stacks of Ta2O5/YpSZ layers for use as thermal barrier coatings (TBC). The observation of the cross section revealed a high porosity. The thermal diffusivity of the layers (1 × 10−7 m2 s−1) was measured by a laser flash technique and compared with values obtained on air plasma sprayed material (3 × 10−7 m2 s−1). The plasma reactor were also used to deposit ZrB2-ZrO2-SiC layers used as Ultra High Temperature Composite (UHTC) from aqueous solutions of zirconyl and Boron nitrates containing suspensions of SiC. Layers up to 100 μm thick were obtained on SiC substrates. XRD was used to study the crystallinity of the layer. The presence of ZrB2 and SiC phases was confirmed after the deposition. XRD analysis showed that heat treatment at 1073 K under oxidizing conditions led to the loss of ZrB2 and the appearance of ZrO2 phases. To understand the behaviour of the layers to interaction with atomic oxygen (combustion for TBC and spacecraft re-entry phase for UHTC), we have measured the atomic oxygen recombination coefficient to determine the number of adsorption sites on the surface of the coatings. This was accomplished by using a low pressure plasma reactor coupled with optical spectroscopic measurements as a diagnostic technique.  相似文献   

7.
Process modeling and design concepts were implemented to aid in the manufacturing of heat-enhanced transdermal drug-delivery systems. The simulated prototype consists of a corticosterone-loaded polymer patch applied to the skin and connected to a heating device in which an exothermic reaction occurs. To achieve a desired transdermal flux of 1.2 × 10−5 mg/cm2 h, this contribution focuses on the influences of the (1) initial reaction rate (−rA0), (2) mass of filler material in the device (m), (3) initial concentration (C0) of medicament in the patch and (4) overall heat transfer coefficient (U). A regression technique yielded the following results: −rA0 = 3.000 × 10−2 kg/m3 s, m = 1.251 × 10−8 kg, U = 6.124 × 10 J/m2 K s and C0 = 1.966 × 10−1 kg/m3. When m was fixed at 12.5 g, the optimum design required the following specifications: rA0 = 2.765 × 10−2 kg/m3 s, U = 1.402 × 103 J/m2 K s and C0 = 1.941 × 10−1 kg/m3. The priority (Si) of the input factors (i) in reaching the target delivery rate is: SC0>SrA0>Sm>SU.  相似文献   

8.
This paper presents, for the first time, a semi-quantitative study on the production of densely packed and vertically aligned (DPVA) single-walled carbon nanotubes (SWNTs) from ultra-thin catalytic films. An up-to-date highest volume density (60-70 kg m−3) and the corresponding high surface density on the order of 1016 m−2 of DPVA-SWNTs have been achieved by point-arc microwave plasma chemical vapor deposition. The precise thickness control of the sandwich-like catalytic nanostructure of 0.5 nm Al2O3/0.5 nm Fe/>5 nm Al2O3, developed by the authors, and a short-time (5 min) heat pretreatment of substrates at a temperature as low as 600 °C play the very key role in the process of fabricating DPVA-SWNTs.  相似文献   

9.
This study shows that carbide-derived carbons (CDCs) with average pore size distributions around 0.9-1 nm and effective surface areas of 1300-1400 m2 g−1 provide electrochemical double-layer capacitors with high performances in both aqueous (2M H2SO4) and aprotic (1M (C2H5)4NBF4 in acetonitrile) electrolytes.In the acidic electrolytic solution, the gravimetric capacitance at low current density (1 mA cm−2) can exceed 200 F g−1, whereas the volumetric capacitance reaches 90 F cm−3. In the aprotic electrolyte they reach 150 F g−1 and 60 F cm−3.A detailed comparison of the capacitive behaviour of CDCs at high current density (up to 100 mA cm−2) with other microporous and mesoporous carbons indicates better rate capabilities for the present materials in both electrolytes. This is due to the high surface area, the accessible porosity and the relatively low oxygen content.It also appears that the surface-related capacitances of the present CDCs in the aprotic electrolyte are in line with other carbons and show no anomalous behaviour.  相似文献   

10.
The absorption of CO2 into aqueous solution of 2-(1-piperazinyl)-ethylamine (PZEA) were studied at 303, 313, and 323 K within the amine concentration range of 0.083-1.226 kmol m−3 using a wetted wall column absorber. The experimental results were used to interpret the kinetics of the reaction of CO2 with PZEA within the amine concentration range of 0.150-1.226 kmol m−3 for the above mentioned temperature range. Based on the pseudo-first-order condition for the CO2 absorption, the overall second order reaction rate constants were determined from the kinetic measurements. The reaction order was found to be in between 0.99 and 1.03 with respect to amine for the later mentioned concentration range. The kinetic rate parameters were calculated and presented at each experimental condition. The second-order rate constants k2, were obtained as 31867.6, 56354.2, and 100946 m3 kmol-1 s-1 at 303, 313, and 323 K, respectively, with activation energy of 47.3 kJ mol−1. This new amine in the field of acid gas removal can be used as an activator by mixing with other alkanolamine solvents due to its very high rate of reaction with CO2.  相似文献   

11.
Indium oxide (In2O3) microspheres with hollow interiors have been prepared by a facile implantation route which enables indium ions released from indium-chloride precursors to implant into nonporous polymeric templates in C2Cl4 solvent. The templates are then removed upon calcination at 500 °C in air atmosphere, forming hollow In2O3 particles. Specific surface area (0.5-260 m2 g−1) and differential pore volume (7 × 10−9 to 3.8 × 10−4 m3 g−1 Å−1) of the hollow particles can be tailored by adjusting the precursor concentration. For the hollow In2O3 particles with high surface area (260 m2 g−1), an enhanced photocatalytic efficiency (up to ∼one-fold increase) against methylene blue (MB) dye is obtained under UV exposure for the aqueous In2O3 colloids with a dilute solids concentration of 0.02 wt.%.  相似文献   

12.
Mutual diffusion coefficients (interdiffusion coefficients) and molar electrical conductivities have been measured for cobalt chloride aqueous solutions in the absence and the presence of saccharose at different concentrations (from 0.01 to 0.3 mol dm−3) and 298.15 K. The diffusion coefficients were measured by using the conductimetric method. For these aqueous solutions, limiting molar conductivity values have been calculated. The value of λ0(Co2+) = 105.36 × 10−4 S m2 mol−1, obtained at 298.15 K in pure water solution, agrees well with that reported in the literature. The Nernst diffusion coefficient values derived from diffusion (1.301 × 10−9 m2 s−1) and from conductance (1.295 × 10−9 m2 s−1) are also in good agreement.The dependence of diffusion coefficients and electrical conductivity of CoCl2 on the concentration of saccharose is discussed by considering the effect of the carbohydrate on the electrolyte dehydration, as well as on the ion-pairs and complexes (CoCl2-saccharose and ions-saccharose) formation.  相似文献   

13.
Alar Jänes  Heisi Kurig  Enn Lust 《Carbon》2007,45(6):1226-1233
Commercial nanoporous carbon RP-20 was activated with water vapor in the temperature range from 950 °C to 1150 °C. The XRD analysis was carried out on nanoporous carbon powder samples to investigate the structural changes (graphitisation) in modified carbon that occurred at activation temperatures T ? 1150 °C. The first-order Raman spectra showed the absorption peak at 1582 cm−1 and the disorder (D) peak at 1350 cm−1. The low-temperature N2 adsorption experiments were performed at −196 °C and a specific surface area up to 2240 m2g−1 for carbon activated at T = 1050 °C was measured. The cell capacitance for two electrode activated nanoporous carbon system advanced up to 60 F g−1 giving the specific capacitance ∼240 F g−1 to one electrode nanoporous carbon ∣1.2 M (C2H5)3CH3NBF4 + acetonitrile solution interface. A very wide region of ideal polarisability for two electrode system (∼3.2 V) was achieved. The low frequency limiting specific capacitance very weakly increases with the rise of specific area explained by the mass transfer limitations in the nanoporous carbon electrodes. The electrochemical characteristics obtained show that some of these materials under discussion can be used for compilation of high energy density and power density non-aqueous electrolyte supercapacitors with higher power densities than aqueous supercapacitors.  相似文献   

14.
Porous polyvinylidene fluoride (PVDF) and polyetherimide (PEI) hollow fiber membranes incorporating polyethylene glycol (PEG) were prepared via spinning process for CO2 membrane stripping. CO2 loaded diethanolamine solution was used as liquid absorbent while N2 was used as a strip gas. The characterization study of the fibers was carried out in terms of permeation test, contact angle measurement and liquid entry pressure (wetting pressure). Performance study via membrane contactor stripping was carried out at specific operating condition. The experimental results showed that PVDF membrane have high gas permeation, effective surface porosity and contact angle despite having lower liquid entry pressure in comparison with PEI membrane. PVDF-PEG membrane showed the highest stripping flux of 4.0 × 10−2 mol m−2 s−1 at 0.7 ms−1 compared to that of PEI membrane. Although the stripping flux for PEI-PEG membranes was slightly lower than PVDF membrane (e.g. 3.5 × 10−2 mol m−2 s−1 at liquid velocity of 0.85 ms−1), the membrane wetting pressure of PEI membrane is higher than hydrophobic PVDF membrane. Long term performance of both membranes showed severe flux reduction but started to level-off after 30 h of operation.  相似文献   

15.
Mg-substituted hydroxyapatite made up of needle-like and plate-like particles containing different amounts of Mg (between 0.21 wt% and 2.11 wt%) were prepared via wet chemical precipitation method of a homogenous suspension of Mg(OH)2/Ca(OH)2 and an aqueous solution of H3PO4. According to the data of Brunauer–Emmett–Teller method and field emission scanning electron microscopy, high specific surface area Mg-substituted hydroxyapatite was obtained. Specific surface area of as-synthesized powders increased from 94.9 m2 g−1 to 104.3 m2 g−1 with increasing concentration of Mg up to 0.64 wt%. Fourier transform infrared spectroscopy, X-ray powder diffraction, differential thermal analysis, and heating microscopy, were used to evaluate thermal stability and sintering behavior of synthesis products. Increase in concentration of Mg in synthesis products (≥0.83 wt%) promoted decomposition of Mg-substituted hydroxyapatite to Mg-substituted β-tricalcium phosphate after thermal treatment.  相似文献   

16.
Performance of templated mesoporous carbons in supercapacitors   总被引:1,自引:0,他引:1  
By analogy with other types of carbons, templated mesoporous carbons (TMCs) can be used as supercapacitors. Their contribution arises essentially from the double layer capacity formed on their surface, which corresponds to 0.14 F m−2 in aqueous electrolytes such as H2SO4 and KOH and 0.06 F m−2 for the aprotic medium (C2H5)4NBF4 in CH3CN. In the case of a series of 27 TMCs, it appears that the effective surface area determined by independent techniques can be as high as 1500-1600 m2 g−1, and therefore exceeds the value obtained for many activated carbons (typically 900-1300 m2 g−1). On the other hand, the relatively low amount of surface oxygen in the present TMCs, as opposed to activated carbons, reduces the contribution of pseudo-capacitance effects and limits the gravimetric capacitance to 200-220 F g−1 for aqueous electrolytes. In the case of non-aqueous electrolyte, it rarely exceeds 100 F g−1.It is also shown that the average mesopore diameter of these TMCs does not improve significantly the ionic mobility compared with typical activated carbons of pore-widths above 1.0-1.3 nm.This study suggests that activated carbons remain the more promising candidates for supercapacitors with high performances.  相似文献   

17.
Asymmetric gas separation membranes were prepared by the dry-casting technique from PEEKWC, a modified amorphous glassy poly(ether ether ketone). The phase inversion process and membrane performance were correlated to the properties of the polymer and the casting solution (molar mass, polymer concentration, solution rheology and thermodynamics). It was found that a broad molar mass distribution of the polymer in the casting solution is most favourable for the formation of a highly selective membrane with a dense skin and a porous sub-layer. Thus, membranes with an effective skin thickness of less than 1 μm were obtained, exhibiting a maximum O2/N2 selectivity of 7.2 and a CO2/CH4 selectivity of 39, both significantly higher than in a corresponding thick dense PEEKWC membrane and also comparable to or higher than that of the most commonly used polymers for gas separation membranes. The CO2 and O2 permeance were up to 9.5×10−3 and 1.8×10−3 m3/(m2 h bar) (3.5 and 0.67 GPU), respectively.  相似文献   

18.
A robust and effective composite film combined the benefits of room temperature ionic liquid (RTIL), chitosan (Chi) and multi-wall carbon nanotubes (MWNTs) was prepared. Cytochrome c (Cyt c) was successfully immobilized on glassy carbon electrode (GCE) surface by entrapping in the composite film. Direct electrochemistry and electrocatalysis of immobilized Cyt c were investigated in detail. A pair of well-defined and quasi-reversible redox peaks of Cyt c was obtained in 0.1 mol L−1 pH 7.0 phosphate buffer solution (PBS), indicating the Chi-RTIL-MWNTs film showed an obvious promotion for the direct electron transfer between Cyt c and the underlying electrode. The immobilized Cyt c exhibited an excellent electrocatalytic activity towards the reduction of H2O2. The catalysis current was linear to H2O2 concentration in the range of 2.0 × 10−6 to 2.6 × 10−4 mol L−1, with a detection limit of 8.0 × 10−7 mol L−1 (S/N = 3). The apparent Michaelis-Menten constant (Km) was calculated to be 0.45 ± 0.02 mmol L−1. Moreover, the modified electrode displayed a rapid response (5 s) to H2O2, and possessed good stability and reproducibility. Based on the composite film, a third-generation reagentless biosensor could be constructed for the determination of H2O2.  相似文献   

19.
A new electrochemical method was proposed for the determination of thymine, which relied on the oxidation of thymine at a carbon ionic liquid electrode (CILE) in a pH 5.0 Britton-Robinson buffer solution. CILE was fabricated by using ionic liquid 1-(3-chloro-2-hydroxy-propyl)-3-methylimidazole acetate as the binder, which showed strong electrocatalytic ability to promote the oxidation of thymine. A single well-defined irreversible oxidation peak appeared with adsorption-controlled process and enhanced electrochemical response on the CILE, which was due to the presence of high conductive ionic liquid on the electrode. The reaction parameters of thymine were calculated with the electron transfer coefficient (α) as 0.27, the electron transfer number (n) as 1.23, the apparent heterogeneous electron transfer rate constant (ks) as 6.87 × 10−6 s−1 and the surface coverage (ГT) as 5.71 × 10−8 mol cm−2. Under the selected conditions the oxidation peak current was proportional to thymine concentration in the range from 3.0 to 3000.0 μM with the detection limit as 0.54 μM (3σ) by differential pulse voltammetry. The proposed method showed good selectivity to the thymine detection without the interferences of coexisting substances.  相似文献   

20.
This work evaluates the volumetric mass transfer coefficient (kLa), the gas hold-up (?) and the mixing time (tm) as a function of superficial gas velocity (UG) in a flat-panel photobioreactor (PBR) with high light path. CO2 utilization efficiency and volumetric power consumption (P/V) were also evaluated. A 50 L working volume photobioreactor was developed, 0.67 m in length, 0.57 m in height and 0.15 m in width (light path). The height-width ratio was 3.8, which is lower than reported in most PBRs. Initially, experiments were performed with air and tap water (biphasic system) and, subsequently, using a Spirulina sp. culture (triphasic system: air, culture medium, cells). Minimum and maximum superficial gas velocity values were 5 × 10−5 and 8.4 × 10−3 m s−1, respectively. Maximum values for kLa and ? were 20.34 h−1 (0.0057 s−1) and 0.033 in the biphasic system, and 31.27 h−1 (0.0087 s−1) and 0.065 in the triphasic system. CO2 utilization efficiency was 30.57%. Results indicate that the hydrodynamic and mass transfer characteristics of this photobioreactor are more efficient than those reported elsewhere for tubular and other flat-plate PBRs, which opens the possibility of using PBRs with higher light paths than yet proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号