首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental study on formation of TiC–TiB2 in situ composites with a broad range of compositions was conducted by self-propagating high-temperature synthesis (SHS) using the reactant compacts from different combinations of Ti, B4C, C, and B powders. Direct reaction of Ti with B4C at stoichiometry of Ti:B4C = 3:1 yields a TiB2-rich composite with TiC:TiB2 = 1:2. Formation of the products containing 20, 33.3, and 50 mol% of TiB2 was achieved by the Ti–B4C–C reactants. In addition, the test specimen composed of Ti, B4C, and B was employed for the synthesis of a composite with 80 mol% TiB2. Among three different types of the powder compacts, the boron-containing sample was characterized by the fastest combustion wave and the highest reaction temperature. The lowest combustion temperature and wave velocity were observed in the Ti–B4C compact. When fine Ni particles were added to the Ti–B4C reactant, it was found that the propagation rate of the reaction front was increased and the densification of the end product was enhanced significantly. This was attributed to formation of the Ti–Ni eutectic liquid during the reaction. As a result, the relative density of a TiC + 2TiB2 composite increases from 30 to 86% with the Ni content from 0 to 20 mol%. Based upon the XRD analysis, small amounts of TiNi3 and TiB were detected in the Ni-reinforced TiC–TiB2 composites.  相似文献   

2.
Fibrous magnesium silicate (Mg6Si4O10(OH)8: mountain leather asbestos) of Serbian origin was used as Si precursor for the synthesis of SiC by carbothermal-reduction process. As a reducing agent, carbon (from various precursors) was used. Formation of β-SiC was confirmed by XRD and SEM/EDS analyses. Porous SiC particles obtained at 1873 K possess longish plate-like morphology. The results show that reduction reaction is assisted by liquid phase formation, as well as vapor phase transport, and that mountain leather asbestos can be very effective mineral precursor for preparation of silicon carbide.  相似文献   

3.
We have employed a simple and novel solution processing method to prepare V2O5-WO3 composite films which demonstrate enhanced Li-ion intercalation properties for applications in lithium-ion batteries or electrochromic displays. This solution processing method employs precursors that only contain the elements of V, W, O and H, which avoids impurity elements such as Na that has been commonly used in other solution methods (e.g. using precursors of sodium metavanadate and sodium tungstate solution). The V2O5-WO3 composite films show enhanced Li-ion intercalation properties compared to pure V2O5 and WO3 films. For example, at a high current density of 1.33 A/g, V2O5-WO3 film with a V2O5/WO3 molar ratio of 10/1 exhibits the highest capacities of 200 mA h/g at the first cycle and 132 mA h/g after 50 cycles, while pure V2O5 film delivers discharge capacities of 108 mA h/g at the first cycle and 122 mA h/g after 50 cycles. The enhanced Li-ion intercalation properties of the composite films are ascribed to the reduced crystallinity, the increased porosity and thus the enhanced surface area. Both the cyclic voltammogram and chronopotentiometric curves of the V2O5-WO3 film with a molar ratio of 10:1 are distinctively different from those of pure oxide films, suggesting a different Li-ion intercalation process in the V2O5-WO3 film with the molar ratio of 10:1.  相似文献   

4.
Mg–23.5 wt.%Ni–(5, 10 and 15 wt.%)La alloys were prepared by gravity casting and their hydrogen-storage properties were examined after pulverizing. The gravity cast Mg–23.5Ni–(5, 10 and 15)La alloys consist of α-Mg, Mg2Ni and Mg17La2 phases. The activated Mg–23.5Ni–10La alloy has the highest hydrogen-storage capacity of 4.96 wt.%H (from PCT curve) and the highest initial hydriding rate (hydrogen content 3.83 wt.%H at 10 min) with an initial hydrogen pressure in the channel of 11 bar H2 at 573 K. This is attributed to its containing the largest amount of the Mg17La2 phase, which is easily dissociable during the hydriding reaction.  相似文献   

5.
A novel technique of aluminothermic reduction of tantalum oxide is developed to produce tantalum in form of powder. In this technique, hydrogen plasma is used to trigger the reaction in a plasma reactor. The reacted powders were analyzed by XRD and SEM. Rietveld method was used to quantify the phases present in the product of reaction. The results showed that a tantalum rich phase with a dendritic structure, typical of molten phases is formed. This phase occurred in significant amounts onto the surface and in bulk of the reacted grains.  相似文献   

6.
(Ti, W, Mo, V)(C, N) nanocomposite powders with globular-like particle of ∼10–100 nm were synthesized by a novel method, namely carbothermal reduction–nitridation (CRN) of complex oxide–carbon mixture, which was made initially from salt solution containing titanium, tungsten, molybdenum, vanadium and carbon elements by air drying and subsequent calcining at 300 °C for 0.5 h. Phase composition of reaction products was discussed by X-ray diffraction (XRD), and microstructure of the calcined powders and final products was studied by scanning electron microscopy (SEM) and transmission electron microscope (TEM), respectively. The results show that the synthesizing temperature of (Ti, W, Mo, V)(C, N) powders was reduced greatly by the novel precursor method. Thus, the preparation of (Ti, 15W, 5Mo, 0.2V)(C, N) is at only 1200 °C for 2 h. The lowering of synthesizing temperature is mainly due to the homogeneous chemical composition of the complex oxide–carbon mixture and its unusual honeycombed structure.  相似文献   

7.
Low dielectric ceramics in the Al2W3−xMoxO12 (x = 0-3) system have been prepared through solid state ceramic route. The phase purity of the ceramic compositions has been studied using powder X-ray diffraction (XRD) studies. The microstructure of the sintered ceramics was evaluated by Scanning Electron Microscopy (SEM). The crystal structure of the ceramic compositions as a result of Mo substitution has been studied using Laser Raman spectroscopy. The microwave dielectric properties of the ceramics were studied by Hakki and Coleman post resonator and cavity perturbation techniques. Al2MoxW3−xO12 (x = 0-3) ceramics exhibited low dielectric constant and relatively high unloaded quality factor. The temperature coefficient of resonant frequency of the compositions is found to be in the range −41 to −72 ppm/°C.  相似文献   

8.
In this study, the macroporous forsterite scaffolds with highly interconnected spherical pores, with sizes ranged from 50 to 200 μm have been successfully fabricated via gelcasting method. The crystallite size of the forsterite scaffolds was measured in the range 26-35 nm. Total porosity of different bodies sintered at different sintering temperatures was calculated in the range 81-86%, while open porosity ranges from 69 to 78%. The maximum values of compressive strength and elastic modulus of the prepared scaffolds were found to be about 2.43 MPa and 182 MPa, respectively, which are close to the lower limit of the compressive strength and elastic modulus of cancellous bone and the compressive strength is equal to the standard for a porous bioceramic bone implant (2.4 MPa). Transmission electron microscopy analyses showed that the particle sizes are smaller than 100 nm. In vitro test in the simulated body fluid proved the good bioactivity of the prepared scaffold. It seems that, the mentioned properties could make the forsterite scaffold appropriate for tissue engineering applications, but cell culture and in vivo tests are needed for more confidence.  相似文献   

9.
The continuous series of perovskite-related oxides with the general formula GdzSr(Al1-xFex)207 0 〈 x 〈 1 were prepared by conventional ceramic technology in air. The pro- cessing stages of Gd2Sr(Al1-xFex)207 0 〈 x 〈 1 phases were investigated by means of X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) with the element phase analysis. The three main stages of GdeSr(All_~Fex)aO7 for- marion are pointed out. The analysis of the mutual influence of intermediate compounds on the synthesis of the target solid solutions of complex composition, in particular for Gd2Sr(All-xFex)207 was carried out. It is determined that the closeness of the reactive mixture composition to the composition of individual compounds Gd2SrA1207 or GdaSrFeaO7 is of importance for the realization of a partic- ular way of GdESr(Al1-xFex)207 solid solutions formation. It is shown that at x ,= 0.2 the reversing in scheme of Gd2Sr(Al1-Fex)207 series formation is observed. The formation of the Gd2Sr(Al1-xFex)207 continuous series is indicated by the monotonic dependence of molar unit cell volume on the iron content x.  相似文献   

10.
A stable aqueous slurry using ammonium polyacrylic acid polyelectrolyte as dispersant and a neodymia-yttria-alumina mixture was prepared as the starting powder. The effect of the polyelectrolyte concentration and the pH of the slurry on the stability of the suspension is studied, and the optimal pH value and the amount of dispersant needed to obtain a stable slurry were determined. Highly consistent slurries with optimal pH and dispersant concentration were prepared by ball milling. The rheological behavior of the slip with different solid loading (48-58 wt.%) has been studied by measuring the viscosity and shear stress as a function of shear rate. Slip with solid loadings of 53 wt.% shows near-Newtonian behavior but becomes non-Newtonian with typical shear-thinning behavior above this solid loading value. The density and microstructure of the cast product bears a direct relationship to the state of the slip induced by variation of the pH and the concentration of the dispersant as well as by solid loading. Transparent Nd:YAG ceramics were obtained by sintering of compacts prepared from optimized slurries at 1750 °C in vacuum.  相似文献   

11.
The sintering behaviour and the microstructural evolution of W6+, Nb5+ and Ti4+ iron-substituted BiFeO3 ceramics have been analyzed. The obtained results show that W6+ and Nb5+ ions interact with the secondary phases usually present in these materials, thus altering the solid state formation of the BiFeO3 phase. In contrast, Ti4+ ions incorporate into the perovskite structure, leading to an exceptionally low proportion of secondary phases. In addition to this, BiFe0.95Ti0.05O3 materials present a dense microstructure with submicronic and nanostructured grains, clearly smaller than those in the undoped materials.  相似文献   

12.
Mullite whiskers were prepared from silica fume in molten Al2(SO4)3-Na2SO4 mixture salts at low temperatures. The resulting mullite whiskers, as well as the nucleation and growth mechanism in the molten environment, have been investigated by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and thermogravimetric analysis (TG-DTA) techniques. XRD studies showed that the materials obtained were orthorhombic mullite. SEM, TEM and HRTEM results revealed that the mullite whiskers were single crystal fibers with diameters ranging from 30 to 150 nm and lengths of over several microns. According to thermodynamic analysis, mullite phase might be spontaneously formed in molten salts as the temperature reached the decomposition temperature of aluminum sulfate (1023 K). Moreover, the mullite crystals grew along [1 1 1] crystal plane firstly and developed into fibrous microstructure finally.  相似文献   

13.
The LBS coating on the surface of spinel LiMn2O4 powder was carried out using the solid-state method, followed by heating at 425 °C for 5 h in air. The powder X-ray diffraction pattern of the LBS-coated spinel LiMn2O4 showed that the LBS coating medium was not incorporated in the spinel bulk structure. The SEM result showed that the LBS coating particles were homogeneously distributed on the surface of the LiMn2O4 powder particles. The effect of the lithium borosilicate (LBS) coating on the charge-discharge cycling performance of spinel powder (LiMn2O4) was studied in the range of 3.5-4.5 V at 1C. The electrochemical results showed that LBS-coated spinel exhibited a more stable cycle performance than bare spinel. The capacity retention of LBS-coated spinel was more than 93.3% after 70 cycles at room temperature, which was maintained at 71.6% after 70 cycles at 55 °C. The improvement of electrochemical performance may be attributed to suppression of Mn2+ dissolution into the electrolyte via the LBS glass layer.  相似文献   

14.
The aim of this report is to present the effect of chromium on the detailed microstructural evolutions in Nb-Si-Cr ternary alloys. The microstructural characteristics of as-cast Nb-Si-Cr ternary alloys with five different compositions have been studied using SEM and XRD. In addition, the lattice parameter and the microhardness of the constituent phases were also estimated. The microstructures of the investigated alloys primarily reveal the presence of three phases: (Nb, Cr, Si)ss, Nb5(Six, Cry)3 and Nb(Crx, Siy)2. The nature, morphology and the amount of the phases, as well as that of the eutectic domains, are found to vary with the composition of the investigated alloys. The lattice parameter of the (Nb, Cr, Si)ss phase decreases, whereas that of the silicide phase first increases and then decreases with increasing concentration of Cr in the investigated alloys. The effect of Cr on the microhardness of (Nb, Cr, Si)ss is more significant compared to that of the adjacent silicide, or the laves phase or that of the eutectic domains.  相似文献   

15.
The hydrogenation characteristics of the slurry composed of the NH4F solution treated Mg2Ni and liquid C6H6 were studied. The F-treatment results in a net-shaped MgF2 surface and higher nickel content in the sub-layer. It is found that the hydride of the NH4F treated alloy has a much higher activity for the hydrogenation of benzene. The catalytic activity for hydrogenation of the alloy depended strongly on the surface properties of the catalyst. At 483 K and under a hydrogen pressure of 4.0 MPa, the alloy absorbed hydrogen first, transformed into hydride and then the benzene was hydrogenated to cyclohexane with the hydride as the catalyst. The hydrogen absorption capacity of slurry system composed of 20 wt.% treated alloy and benzene reached 6.4 wt.% and the hydrogenation completed in 20 min. Results of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) analysis on the crystal structure, surface composition and surface morphology of the untreated and treated alloy are presented and discussed.  相似文献   

16.
Formation of Ti3SiC2 was conducted by self-propagating high-temperature synthesis (SHS) from both the elemental powder compacts of Ti:Si:C = 3:1:2 and the TiC-containing samples compressed from powder mixtures of Ti/Si/C/TiC with TiC content ranging from 4.3 to 33.3 mol%. The effect of TiC addition was studied on combustion characteristics and the degree of phase conversion. For the elemental powder compacts, with the progress of combustion wave the sample experiences substantial deformation, including axial elongation and radial contraction. The extent of sample deformation and flame-front propagation velocity were considerably reduced for the samples with TiC addition, because the dilution effect of TiC lowered the reaction temperature. Two reaction mechanisms were adopted to explain the formation of Ti3SiC2, one involving the reaction of a Ti–Si liquid phase with solid reactants for the elemental powder compact and the other dominated by the interaction of solid-phase species for the TiC-containing sample. For all products synthesized in this study, the XRD analysis identifies formation of Ti3SiC2 along with a major impurity TiC and a small amount of Ti5Si3. The resulting Ti3SiC2 is typically elongated grains. Based upon the XRD profile, the Ti3SiC2 content at a level of 71.5 vol.% was obtained in the product from the elemental powder compact. With the addition of TiC, an improvement in the yield of Ti3SiC2 was observed and an optimal conversion reaching 85 vol.% was achieved by the sample with 20 mol% of TiC. However, further increase of the TiC amount led to a decrease in the Ti3SiC2 content, because of the low reaction temperature around 1150 °C.  相似文献   

17.
Hexagonal CdS round microparticles in flower-like clusters were synthesized by glycolthermal reactions of CdCl2 and thiourea as cadmium and sulphur sources in 1,2-propylene glycol (PG) at 100-200 °C for 10-30 h. Phase and morphology were detected using X-ray diffraction (XRD), and scanning and transmission electron microscopy (SEM, TEM). The products were pure phase of hexagonal wurtzite CdS. The quantitative elemental analysis of Cd:S ratio was detected using energy dispersive X-ray (EDX) analyzer. Raman spectrometer revealed the presence of fundamental and overtone modes at 296 and 595 cm−1, corresponding to the strong 1LO and weak 2LO modes, respectively. Photonic properties were investigated using UV-visible and photoluminescence (PL) spectroscopy. They showed the same absorption at 493-498 nm, and emission at 431 nm due to the excitonic recombination process. A possible formation mechanism was also proposed, according to experimental results.  相似文献   

18.
The structural relationship between the hydride phases in Ti–Mo–H solid solution system (Mo content up to 15 at% in the alloy) during dehydrogenation process under annealing has been studied by conventional and in situ X-ray powder diffraction and transmission electron microscopy (TEM) analysis. During dehydrogenation, the saturated hydrides of the Ti–Mo alloys with fcc δ-phase structure transfer into bcc β-phase at higher temperatures. An associated hydrogen concentration reduction for the δ-phase hydride is observed in the process. However, as the hydrogen concentrations decrease to certain values (H/M  1.1–1.7), the unsaturated δ-phase formed at high temperature would become unstable at lower temperature, and transfer into a tetragonal phase (denoted the -phase here). Unlike that of the -phase in Ti–H system, the phase transition does not occur for the saturated δ-phase with hydrogen concentration close to the stoichiometric limit. The hydrogen concentration of this -phase hydride is in between that of the tetragonal γ and -phase in Ti–H system, but more close to the γ-phase. The occurrence region of this -phase expands along with the increase of the Mo content in the alloys. The phase has a lattice similar to that of the -phase in Ti–H system with corresponding fct unit-cell c/a < 1.  相似文献   

19.
Lattice parameters, hydrogen absorption properties and electrochemical cycling properties up to 240 cycles have been measured as a function of the Ce content for alloys of composition La0.82−xCexNd0.15Pr0.03Ni3.55Mn0.4Al0.3Co0.75 (0≤x≤0.82). The results show the strong increase of the plateau pressure correlated to the cell volume decrease as a function of x. On the other hand, the hydrogen capacity measured in solid–gas reaction as well as the electrochemical capacity decreases slightly. The results show that both La and Ce have to be present to achieve a good cycle life, the cycling degradation being almost independent of their relative quantities in a broad range of concentrations.  相似文献   

20.
A new series of photocatalysts, Bi2Zn2/3−xCuxTa4/3O7 (Cu-β-BZT) crystals with pyrochlore structure were synthesized by the method of solid-state reaction (SSR). With small amount of Cu doped (0.01 ≤ x ≤ 0.04), the phase structure was kept to be monoclinic pyrochlore as pure β-BZT. The diffuse reflectance spectrum of Cu-β-BZT samples showed a red shift. The method of Cu doping enhanced the photocatalytic activity, and when the value of x is 0.03, the sample showed the highest activity, which is about 10 times higher than that of pure β-BZT under UV light. Especially, the samples of Cu-β-BZT showed photocatalytic activities under visible light irradiation (λ > 400 nm). Effects of the Cu doped on the photocatalytic activities of the catalysts were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号