首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonlinear vibration, nonlinear bending and postbuckling analyses are presented for a sandwich plate with FGM face sheets resting on an elastic foundation in thermal environments. The material properties of FGM face sheets are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The governing equation of the plate that includes plate-foundation interaction is solved by a two-step perturbation technique. The thermal effects are also included and the material properties of both FGM face sheets and homogeneous core layer are assumed to be temperature-dependent. The numerical results reveal that the foundation stiffness and temperature rise have a significant effect on the natural frequency, buckling load, postbuckling and nonlinear bending behaviors of sandwich plates. The results also reveal that the core-to-face sheet thickness ratio and the volume fraction distribution of FGM face sheets have a significant effect on the natural frequency, buckling load and postbuckling behavior of the sandwich plate, whereas this effect is less pronounced for the nonlinear bending, and is marginal for the nonlinear to linear frequency ratios of the same sandwich plate.  相似文献   

2.
The bending response of functionally graded material (FGM) sandwich plates subjected to thermomechanical loads is investigated using a four-variable refined plate theory. A new type of FGM sandwich plate, namely, both FGM face sheets and an FGM hard core, is considered. Containing only four unknown functions, the governing equations are deduced based on the principle of virtual work and then these equations are solved via the Navier approach. Analytical solutions are obtained to predict the deflections and stresses of simply supported FGM sandwich plates. Benchmark comparisons of the solutions obtained for a degradation model (functionally graded face sheets and homogeneous cores) with ones computed by several other theories are conducted to verify the accuracy and efficiency of the present approach. The influences of volume fraction distribution, geometrical parameters, and thermal load on dimensionless deflections and normal and shear stresses of the FGM sandwich plates are studied.  相似文献   

3.
In the present study, the thermal stability of laminated functionally graded (FGM) circular plates of variable thickness subjected to uniform temperature rise based on the first-order shear deformation plate theory is presented. Furthermore, two models for FGM plates with variable thickness, corresponding with two manufacturing methods, are proposed. The laminated FGM plate with variable thickness is considered as a sandwich plate constituted of a homogeneous core of variable thickness and two constant thickness FGM face sheets whose material properties are assumed to be graded in the thickness direction according to a simple power law. In order to determine the distribution of the prebuckling thermal load along the radius, the membrane equation is solved using the shooting method. Subsequently, employing the pseudo-spectral method that makes use of Chebyshev polynomials, the stability equations are solved numerically to evaluate the critical temperature rise. The results demonstrate that the thermal stability is significantly influenced by the thickness variation profile, aspect ratio, the volume fraction index, and the core-to-face sheet thickness ratio.  相似文献   

4.
The thermoelastic bending analysis of functionally graded ceramic–metal sandwich plates is studied. The governing equations of equilibrium are solved for a functionally graded sandwich plates under the effect of thermal loads. The sandwich plate faces are assumed to have isotropic, two-constituent material distribution through the thickness, and the modulus of elasticity, Poisson’s ratio of the faces, and thermal expansion coefficients are assumed to vary according to a power law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic ceramic material. Several kinds of sandwich plates are used taking into account the symmetry of the plate and the thickness of each layer. Field equations for functionally graded sandwich plates whose deformations are governed by either the shear deformation theories or the classical theory are derived. Displacement functions that identically satisfy boundary conditions are used to reduce the governing equations to a set of coupled ordinary differential equations with variable coefficients. The influences played by the transverse normal strain, shear deformation, thermal load, plate aspect ratio, side-to-thickness ratio, and volume fraction distribution are studied. Numerical results for deflections and stresses of functionally graded metal–ceramic plates are investigated.  相似文献   

5.
In this article, a new five-variable refined plate theory for the free vibration analysis of functionally graded sandwich plates is developed. By dividing the transverse displacement into bending, shear, and thickness stretching parts, the number of unknowns and governing equations of the present theory is reduced, and hence, makes it simple to use. Indeed, the number of unknown functions involved in the present theory is only five, as opposed to six or more in the case of other shear and normal deformation theories. The theory accounts for hyperbolic distribution of the transverse shear strains, and satisfies the zero traction boundary conditions on the surfaces of the plate without using a shear correction factor. Two common types of functionally graded material (FGM) sandwich plates, namely, the sandwich with FGM facesheet and homogeneous core and the sandwich with homogeneous facesheet and FGM core, are considered. The equations of motion are obtained using Hamilton's principle. Numerical results of the present theory are compared with three-dimensional elasticity solutions and other higher-order theories reported in the literature. It can be concluded that the proposed theory is accurate and efficient in predicting the free-vibration response of functionally graded sandwich plates.  相似文献   

6.
Based on Reddy's higher-order shear deformation plate theory, this article presents an analysis of the nonlinear dynamic response and vibration of imperfect functionally graded material (FGM) thick plates subjected to blast and thermal loads resting on elastic foundations. The material properties are assumed to be temperature-dependent and graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. Numerical results for the dynamic response and vibration of the FGM plates with two cases of boundary conditions are obtained by the Galerkin method and fourth-order Runge–Kutta method. The results show the effects of geometrical parameters, material properties, imperfections, temperature increment, elastic foundations, and boundary conditions on the nonlinear dynamic response and vibration of FGM plates.  相似文献   

7.
Buckling analysis of perfect circular functionally graded plates with surface-bounded piezoelectric layers based on the first-order shear deformation theory is presented in this article. The material properties of the functionally graded (FG) layer are assumed to vary continuously through the plate thickness by distribution of power law of the volume fraction of the constituents. The plate is assumed to be under constant electrical field and two types of thermal loadings, namely, the uniform temperature rise and nonlinear temperature gradient through the thickness. Also, the stability of a plate under radial mechanical compressive force is examined. The equilibrium and stability equations are derived based on the first-order shear deformation plate theory using a variational approach. The boundary condition of the plate as an immovable type of the clamped edge is considered. Resulting equations are employed to obtain the closed-form solution for the critical buckling temperature for each loading case. The effects of electric field, piezo-to-host thickness ratio, and power law index of functionally graded plates subjected to thermo-mechanical-electrical loads are investigated. The results are compared with the classical plate theory and verified with the available data in the open literature.  相似文献   

8.
Compressive postbuckling under thermal environments and thermal postbuckling due to a uniform temperature rise are presented for a simply supported, shear deformable functionally graded plate with piezoelectric fiber reinforced composite (PFRC) actuators. The material properties of functionally graded materials (FGMs) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and the material properties of both FGM and PFRC layers are assumed to be temperature-dependent. The governing equations are based on a higher order shear deformation plate theory that includes thermo-piezoelectric effects. The initial geometric imperfection of the plate is taken into account. A two step perturbation technique is employed to determine buckling loads (temperature) and postbuckling equilibrium paths. The numerical illustrations concern the compressive and thermal postbuckling behaviors of perfect and imperfect, geometrically mid-plane symmetric FGM plates with fully covered or embedded PFRC actuators under different sets of thermal and electric loading conditions. The results for monolithic piezoelectric actuator, which is a special case in the present study, are compared with those of PFRC actuators. The results reveal that, in the compressive buckling case, the applied voltage usually has a small effect on the postbuckling load–deflection curves of the plate with PFRC actuators, whereas in the thermal buckling case, the effect of applied voltage is more pronounced for the plate with PFRC actuators, compared to the results of the same plate with monolithic piezoelectric actuators.  相似文献   

9.
Due to the variation in material properties through the thickness, bifurcation buckling cannot generally occur for plates or beams made of functionally graded materials (FGM) with simply supported edges. Further investigation in this paper indicates that FGM beams subjected to an in-plane thermal loading do exhibit some unique and interesting characteristics in both static and dynamic behaviors, particularly when effects of transverse shear deformation and the temperature-dependent material properties are simultaneously taken into account. In the analysis, based on the nonlinear first-order shear deformation beam theory (FBT) and the physical neutral surface concept, governing equations for both the static behavior and the dynamic response of FGM beams subjected to uniform in-plane thermal loading are derived. Then, a shooting method is employed to numerically solve the resulting equations. The material properties of the beams are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and to be temperature-dependent. The effects of material constants, transverse shear deformation, temperature-dependent material properties, in-plane loading and boundary conditions on the nonlinear behavior of FGM beams are discussed in detail.  相似文献   

10.
《Composites Part B》2007,38(2):201-215
Nonlinear thermal bending analysis is presented for a simply supported, shear deformable functionally graded plate without or with piezoelectric actuators subjected to the combined action of thermal and electrical loads. Heat conduction and temperature-dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform distribution over the plate surface and varied in the thickness direction and the electric field considered only has non-zero-valued component EZ. The material properties of functionally graded materials (FGMs) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and the material properties of both FGM and piezoelectric layers are assumed to be temperature-dependent. The governing equations of an FGM plate are based on a higher order shear deformation plate theory that includes thermo-piezoelectric effects. A two step perturbation technique is employed to determine the thermal load–deflection and thermal load–bending moment curves. The numerical illustrations concern nonlinear bending response of FGM plates without or with surface bonded piezoelectric actuators due to heat conduction and under different sets of electric loading conditions. The results reveal that for the case of heat conduction the nonlinear thermal bending responses are quite different to those of FGM plates subjected to transverse mechanical loads, and the temperature-dependency of FGMs could not be neglected in the thermal bending analysis.  相似文献   

11.
Abstract

A linearized buckling analysis of functionally graded material (FGM) isotropic and sandwich plates is carried out by virtue of the Hierarchical Trigonometric Ritz Formulation (HTRF). Quasi-3D Ritz models based on equivalent single layer (ESL) and zig zag (ZZ) plate theories are developed within the framework of the Carrera Unified Formulation (CUF). Several in-plane loading conditions accounting for axial, biaxial, and shear loadings are taken into account. Parametric studies are carried out in order to evaluate the effects of significant parameters, such as volume fraction index, length-to-thickness ratio, sandwich plate type, and loading type, on the critical buckling loads.  相似文献   

12.
In this study, the nonlinear thermo-elastic bending analysis of a functionally graded carbon nanotube-reinforced composite plate resting on two parameter elastic foundations is investigated. The material properties of the carbon nanotube-reinforced composite plates are assumed to be temperature dependent and graded in the thickness direction. The nonlinear formulations are based on a first-order shear deformation plate theory and large deflection von Karman equations. A dynamic relaxation method is employed to solve the plate nonlinear partial differential equations. The effects of volume fraction of carbon nanotubes, thermal gradient, temperature dependency, elastic foundation, boundary conditions, plate width-to-thickness ratio, aspect ratio, and carbon nanotubes distribution are studied in detail.  相似文献   

13.
This paper presents an analytical investigation on the buckling and postbuckling behaviors of thick functionally graded plates resting on elastic foundations and subjected to in-plane compressive, thermal and thermomechanical loads. Material properties are assumed to be temperature independent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of constituents. The formulations are based on higher order shear deformation plate theory taking into account Von Karman nonlinearity, initial geometrical imperfection and Pasternak type elastic foundation. By applying Galerkin method, closed-form relations of buckling loads and postbuckling equilibrium paths for simply supported plates are determined. Analysis is carried out to show the effects of material and geometrical properties, in-plane boundary restraint, foundation stiffness and imperfection on the buckling and postbuckling loading capacity of the plates.  相似文献   

14.
A thermal buckling analysis is presented for functionally graded rectangular plates that are integrated with surface-bonded piezoelectric actuators and are subjected to the combined action of thermal load and constant applied actuator voltage. The temperature-dependent material properties of the functionally graded plate are assumed to vary as a power form of the thickness coordinate. Derivation of the equations is based on the third-order shear deformation plate theory. Results for the critical buckling temperatures are obtained in closed-form solution, which are convenient to be used in engineering design applications. The effects of the applied actuator voltage, plate geometry, and volume fraction exponent of the functionally graded material on the buckling temperature are investigated.  相似文献   

15.
Hygrothermal and mechanical buckling responses of functionally graded (FG) plates resting on Winkler–Pasternak’s foundations are presented in this paper using a refined quasi-3D model. The effects due to transverse normal strain and shear deformation are both included. The present model exactly satisfies stress boundary conditions on the upper and lower surfaces of the FG plate without using shear correction factors. It is assumed that the material properties vary according to a power law of the thickness coordinate variable. The hygrothermal buckling equilibrium equations are derived from the principle of virtual work for FG plates resting on Winkler–Pasternak’s foundations with simply-supported boundary conditions. Two types of thermal and hygrothermal loading, uniform thermal and hygrothermal rise, linear thermal and hygrothermal distribution through the thickness are considered. Numerical results are presented to verify the accuracy of the present study. The effects played by Winkler–Pasternak’s parameters, plate aspect ratio, side-to-thickness ratio, gradient index, and loading type on the critical buckling of the FG plates are all investigated.  相似文献   

16.
In the present study, finite element formulation based on higher order shear deformation plate theory is developed to analyze nonlinear natural frequencies, time and frequency responses of functionally graded plate with surface-bonded piezoelectric layers under thermal, electrical and mechanical loads. The von Karman nonlinear strain–displacement relationship is used to account for the large deflection of the plate. The material properties of functionally graded material (FGM) are assumed temperature-dependent. The temperature field has uniform distribution over the plate surface and varies in the thickness direction. The considered electric field only has non-zero-valued component Ez. Numerical results are presented to study effects of FGM volume fraction exponent, applied voltage in piezoelectric layers, thermal load and vibration amplitude on nonlinear natural frequencies and time response of FGM plate with integrated piezoelectric layers. In addition, nonlinear frequency response diagrams of the plate are presented and effects of different parameters such as FGM volume fraction exponent, temperature gradient, and piezoelectric voltage are investigated.  相似文献   

17.
In the present paper, mechanical and thermal buckling analyses of two-directional functionally graded material (2D-FGM) circular plate are investigated. The motion equations have been derived based on the first-order shear deformation theory (FSDT) and power series method has been employed to solve the motion equations. Two different kinds of boundary condition including simply supported and fixed are considered. The material properties are assumed to vary in both transverse and radial directions according to power and exponential laws, respectively. Comparisons with available studies in the literature confirm the high accuracy of the current approach. The effects of geometrical parameters and 2D-FG power indices on the critical buckling load have been studied. It is shown that increase of modulus of elasticity of outer layers of plate due to higher presence of hard phase of FGM, in radius and thickness directions of the plate makes it possible to attain a more solid structure against mechanical buckling loads, while increase of coefficient of thermal expansion and coefficient of thermal conduction of outer layers of plate results in less stability against thermal buckling loads.  相似文献   

18.
The dynamic instability of functionally graded material (FGM) sandwich plates under an arbitrary periodic load in a thermal environment is studied. The sandwich plate is made up of two layers of FGM face sheets and one layer of homogeneous metal core. The properties of a FGM layer vary continuously across the thickness according to a simple power law. A set of differential equations of Mathieu type is formed to determine the dynamic instability regions based on Bolotin's method. The dynamic stability of the FGM sandwich plates is sensitive to the temperature rise, volume fraction index, thickness ratio, and static and dynamic load factor.  相似文献   

19.
In this study, the thermal buckling analysis of hybrid laminated plates made of two-layered functionally graded materials (FGMs) that are integrated with surface-bonded piezoelectric actuators referred to as (P/FGM)s are investigated. Material properties for both substrate FGM layers and piezoelectric layers are temperature-dependent. Uniform temperature rise as a thermal load and constant applied actuator voltage are considered for this analysis. By definition of four new analytic functions, the five coupled governing stability equations, which are derived based on the first-order shear deformation plate theory, are converted into fourth-order and second-order decoupled partial differential equations (PDEs). Considering a Levy-type solution, these two PDEs are reduced to two ordinary differential equations. One of these equations is solved using an accurate analytical solution, which is named as power series Frobenius method. The effects of parameters, such as the plate aspect ratio, ratio of piezoelectric layer thickness to thickness of FGM layer, gradient index, actuator voltage, and the temperature dependency on the critical buckling temperature difference, are illustrated and explained. The critical buckling temperatures of (P/FGM)s with six various boundary conditions are reported for the first time and can be served as benchmark results for researchers to validate their numerical and analytical methods in the future.  相似文献   

20.
A postbuckling analysis is presented for a functionally graded cylindrical shell with piezoelectric actuators subjected to lateral or hydrostatic pressure combined with electric loads in thermal environments. Heat conduction and temperature-dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform distribution over the shell surface and varied in the thickness direction and the electric field considered only has non-zero-valued component EZ. The material properties of functionally graded materials (FGMs) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and the material properties of both FGM and piezoelectric layers are assumed to be temperature-dependent. The governing equations are based on a higher order shear deformation theory with a von Kármán–Donnell-type of kinematic nonlinearity. A boundary layer theory of shell buckling is extended to the case of FGM hybrid laminated cylindrical shells of finite length. A singular perturbation technique is employed to determine the buckling pressure and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of pressure-loaded, perfect and imperfect, FGM cylindrical shells with fully covered piezoelectric actuators under different sets of thermal and electric loading conditions. The results reveal that temperature dependency, temperature change and volume fraction distribution have a significant effect on the buckling pressure and postbuckling behavior of FGM hybrid cylindrical shells. In contrast, the control voltage only has a very small effect on the buckling pressure and postbuckling behavior of FGM hybrid cylindrical shells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号