共查询到20条相似文献,搜索用时 0 毫秒
1.
Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks 总被引:14,自引:1,他引:14
In machining of parts, surface quality is one of the most specified customer requirements. Major indication of surface quality on machined parts is surface roughness. Finish hard turning using Cubic Boron Nitride (CBN) tools allows manufacturers to simplify their processes and still achieve the desired surface roughness. There are various machining parameters have an effect on the surface roughness, but those effects have not been adequately quantified. In order for manufacturers to maximize their gains from utilizing finish hard turning, accurate predictive models for surface roughness and tool wear must be constructed. This paper utilizes neural network modeling to predict surface roughness and tool flank wear over the machining time for variety of cutting conditions in finish hard turning. Regression models are also developed in order to capture process specific parameters. A set of sparse experimental data for finish turning of hardened AISI 52100 steel obtained from literature and the experimental data obtained from performed experiments in finish turning of hardened AISI H-13 steel have been utilized. The data sets from measured surface roughness and tool flank wear were employed to train the neural network models. Trained neural network models were used in predicting surface roughness and tool flank wear for other cutting conditions. A comparison of neural network models with regression models is also carried out. Predictive neural network models are found to be capable of better predictions for surface roughness and tool flank wear within the range that they had been trained.Predictive neural network modeling is also extended to predict tool wear and surface roughness patterns seen in finish hard turning processes. Decrease in the feed rate resulted in better surface roughness but slightly faster tool wear development, and increasing cutting speed resulted in significant increase in tool wear development but resulted in better surface roughness. Increase in the workpiece hardness resulted in better surface roughness but higher tool wear. Overall, CBN inserts with honed edge geometry performed better both in terms of surface roughness and tool wear development. 相似文献
2.
A. E. Diniz J. R. Ferreira F. T. Filho 《International Journal of Machine Tools and Manufacture》2003,43(3):545
Nowadays, the use of cutting fluids on machining operations has been questioned, due to problems they may cause to the environment, due to damage to human health and also more due to the severe laws regarding industrial waste that have been passed. Therefore, industries are being forced to review the production processes aiming either, at elimination or, when it is not possible, a sharp reduction in the use of these fluids. The technique of minimum volume of oil (MVO) has been studied in machining processes as one alternative to the use of abundant cutting fluid. Research has shown that this technique, which is the pulverisation of a minimum volume of oil in a flow of compressed air, in several cases, reduces tool wear when compared to complete dry cutting, causing the improvement of the workpiece surface quality and an increase in tool life. In this work, the influence of MVO (oil flow of 10 ml/h) in the wear of a cubic boron nitride (CBN) tool, when turning 52100 hardened steel, was studied. Aiming at a comparison of the results, the experiments were also carried out under two other conditions: dry cutting and cutting with abundant soluble oil (wet cutting). During the experiments, the influence of cutting speed on CBN tool wear for the three refrigeration conditions was also checked. Besides this, tool wear and workpiece surface roughness was also measured as cutting time elapsed. 相似文献
3.
C. Scheffer H. Kratz P. S. Heyns F. Klocke 《International Journal of Machine Tools and Manufacture》2003,43(10):76
This paper describes an in-depth study on the development of a system for monitoring tool wear in hard turning. Hard turning is used in the manufacturing industry as an economic alternative to grinding, but the reliability of hard turning processes is often unpredictable. One of the main factors affecting the reliability of hard turning is tool wear. Conventional wear-monitoring systems for turning operations cannot be used for monitoring tools used in hard turning because a conglomeration of phenomena, such as chip formation, tool wear and surface finish during hard turning, exhibits unique behavior not found in regular turning operations. In this study, various aspects associated with hard turning were investigated with the aim of designing an accurate tool wear-monitoring system for hard turning. The findings of the investigation showed that the best method to monitor tool wear during hard turning would be by means of force-based monitoring with an Artificial Intelligence (AI) model. The novel formulation of the proposed AI model enables it to provide an accurate solution for monitoring crater and flank wear during hard turning. The suggested wear-monitoring system is simple and flexible enough for online implementation, which will allow more reliable hard turning in industry. 相似文献
4.
Chip formation, cutting forces, and tool wear in turning of Zr-based bulk metallic glass 总被引:2,自引:3,他引:2
Mustafa Bakkal Albert J. Shih Ronald O. Scattergood 《International Journal of Machine Tools and Manufacture》2004,44(9):915-925
The chip light emission and morphology, cutting forces, surface roughness, and tool wear in turning of Zr-based bulk metallic glass (BMG) material are investigated. Machining results are compared with those of aluminum 6061-T6 and AISI 304 stainless steel under the same cutting conditions. This study demonstrates that the high cutting speeds and tools with low thermal conductivity and rake angle activate the light emission and chip oxidation in BMG machining. For the BMG chip without light emission, serrated chip formation with adiabatic shear band and void formation is observed. The cutting force analysis further correlates the chip oxidation and specific cutting energy and shows the significant reduction of cutting forces for machining BMG at high cutting speeds. The machined surface of BMG has better surface roughness than that of the other two work materials. Some tool wear features, including the welding of chip to the tool tip and chipping of the polycrystalline cubic boron nitride (PCBN) tool edge, are reported for turning of BMG. This study concludes that BMG can be machined with good surface roughness using conventional cutting tools. 相似文献
5.
White layer formation in hard turning of H13 tool steel at high cutting speeds using CBN tooling 总被引:6,自引:0,他引:6
S.S. Bosheh P.T. Mativenga 《International Journal of Machine Tools and Manufacture》2006,46(2):225-233
White layers formed during machining have negative effects on surface finish and fatigue strength of products. The white layer is generally a hard phase and leads to the surface becoming brittle causing crack permeation and product failure. This is a major concern with respect to service performance especially in the aerospace and automotive industries. Numerous authors have investigated the formation of white layer under different manufacturing processes. In turning, it was suggested that the white layer structure is a martensitic phase whose formation is correlated to tool wear. Past studies have tended to concentrate on the formation of white layers at conventional cutting speeds, but never examined the formation at high cutting speeds. This paper reports on an investigation of white layer formation for wide range of cutting speeds in hard turning of 54-56 HRC H13 tool steel. The specimens were analysed using a micro hardness tester, SEM with EDAX software and Electron Micro-Probe. In addition tool wear and workpiece temperature were studied. The machined surface showed an increase in hardness with respect to the bulk material. Compositional gradients were noted for the white layer in terms of depletion of the elements iron and chromium coupled with an enrichment of carbon and oxygen content. The results showed that despite tool wear increasing with cutting speed, white layer depth and hardness actually reduced. This finding suggests that there may not be a direct relationship between white layer formation and wear, the correlation maybe linked to wear mode. 相似文献
6.
Significant progress has already been achieved in green manufacturing including dry and hard, often high-speed, machining technologies. For instance, the demand for higher productivity has resulted in the wider application of ceramic and PCBN tools with special multi-radii (wiper) geometry. This paper reports some important characteristics of the surface roughness produced in the turning of a hardened low-chromium alloy steel using mixed alumina–titanium carbon (TiC) ceramic cutting tools equipped with both conventional and wiper inserts. The characteristic geometrical features of surfaces obtained in both these turning operations have been assessed by means of representative two-dimensional (2D) surface roughness parameters, and some 3D visualizations, which allowed more complete characterization of the surface topography and prediction of its service properties. Results show that keeping equivalent feed rates, i.e. 0.1 mm/rev for conventional and 0.2 mm/rev for wiper tools, the surfaces obtained have similar 3D height roughness parameters, and comparable values of skew and kurtosis. At defined cutting parameters, surfaces produced by wiper tools contain blunt peaks with distinctly smaller slopes resulting in better bearing properties. Only marginal changes of Ra parameter were recorded during 15 min machining trials. 相似文献
7.
Effect of tool nose radius and tool wear on residual stress distribution in hard turning of bearing steel 总被引:4,自引:0,他引:4
Meng Liu Jun-ichiro Takagi Akira Tsukuda 《Journal of Materials Processing Technology》2004,150(3):234-241
This study presents a experimental investigation to clarify the effects of tool nose radius and tool wear on residual stress distribution in hard turning of bearing steel JIS SUJ2. Three types of CBN tools with different nose radius (0.4, 0.8 and 1.2 mm) were used in this study. The residual stresses beneath the machined surface were measured using X-ray diffraction technique and electro-polishing technique. The results obtained in this study show that the tool nose radius affects the residual stress distribution significantly. Especially the effect on the residual stresses at the machined surface at early stage of cutting process is remarkable. For the tool wear, as the tool wear increases, the residual stress at the machined surface shifts to tensile stress range and the residual compressive stress beneath the machined surface increases greatly. 相似文献
8.
Reduction of wear induced surface zone effects during hard turning by means of new tool geometries 总被引:1,自引:1,他引:1
Tool wear during hard turning influences the properties of the workpiece surface and subsurface layer significantly. Due to
increasing flank face wear at the cutting edge, the contact conditions between tool and workpiece are changed. The mechanical
and thermal load in the workpiece surface increases during the process. This favors the formation of white layers and of residual
stress gradients in the subsurface zone of hardened workpieces whereby the components life time is reduced. The article presents
novel modifications of the tool geometry, which leads to a considerable prolongation of the tool life time. This advanced
tool design enables the production of constant material properties in the surface and subsurface zone during a broad time
window. 相似文献
9.
A comparison of dry and air-cooled turning of grey cast iron with mixed oxide ceramic tool 总被引:1,自引:0,他引:1
The present work compares the performance of a mixed oxide ceramic tool in dry and air-cooled turning of grey cast iron. First, the study was done in the range of process parameters where dry turning provided satisfactory performance. The contours of surface roughness and tool life were generated with the help of trained neural networks. A novel procedure of neural network training is used in this work. The study was extended to the range in which dry turning performed poorly in terms of tool life. Tool wear, surface roughness of the machined job and forces and vibration during the cutting were studied. It was observed that air-cooling significantly reduces the tool wear at high cutting speed. At higher cutting speeds, where the dry turning performs very poorly, the air-cooled turning provides an improved surface finish also apart from the reduction in tool wear. In all the cases, the cutting and feed forces get reduced in air-cooling. Thus, air-cooled turning of grey cast iron with mixed oxide ceramic tools offers a promising environment-friendly option. 相似文献
10.
Abhijeet S. More Wenping Jiang W.D. Brown Ajay P. Malshe 《Journal of Materials Processing Technology》2006,180(1-3):253-262
PCBN is the dominant tool material for hard turning applications due to its high hardness, high wear resistance, and high thermal stability. However, the inflexibility of fabricating PCBN inserts with complex tool geometries and the prohibitive cost of PCBN inserts are some of the concerns in furthering the implementation of CBN based materials for hard turning. In this paper, we present the results of a thorough investigation of cBN plus TiN (cBN–TiN) composite-coated, commercial grade, carbide inserts (CNMA 432, WC–Co (6% Co)) for hard turning applications in an effort to address these concerns. The effect of cutting speed and feed rate on tool wear (tool life), surface roughness, and cutting forces of the cBN–TiN coated carbide inserts was experimented and analyzed using analysis of variance (ANOVA) technique, and the cutting conditions for their maximum tool life were evaluated. The tool wear, surface roughness, and cutting forces of the cBN–TiN coated and commercially available PCBN tipped inserts were compared under similar cutting conditions. Both flank wear and crater wear were observed. The flank wear is mainly due to abrasive actions of the martensite present in the hardened AISI 4340 alloy. The crater wear of the cBN–TiN coated inserts is less than that of the PCBN inserts because of the lubricity of TiN capping layer on the cBN–TiN coating. The coated CNMA 432 inserts produce a good surface finish (<1.6 μm) and yield a tool life of about 18 min per cutting edge. In addition, cost analysis based on total machining cost per part was performed for the comparison of the economic viability between the cBN–TiN coated and PCBN inserts. 相似文献
11.
Gaurav Bartarya S.K. Choudhury 《International Journal of Machine Tools and Manufacture》2012,53(1):1-14
Hard turning is gaining grounds for machining hardened steels as it has several benefits over grinding. There are several issues, which should be understood and dealt with, to achieve successful performance of the process. Researchers have worked upon several aspects related to hard turning. The present work is an effort to review some of these works and to understand the key issues related to process performance. The review shows that the type of tool material, cutting edge geometry and cutting parameters affect the process efficiencies in terms of tool forces, surface integrities integrity, and white layer. Adequate machine rigidity is a must essential to minimize the process inaccuracies. Also moreover, for finish hard turning, where the depth of cut is less than the nose radius of the tool, the forces deviate from the conventional trends as the radial force component is the maximum and axial force component becomes minimum. The present work finally lists down certain areas that can be taken up for further research in hard turning. 相似文献
12.
Vitor Augusto A. de GodoyAnselmo Eduardo Diniz 《Journal of Materials Processing Technology》2011,211(6):1014-1025
In the machining of hardened steel surfaces, turning instead of grinding has been employed increasingly due to several advantages it offers, such as flexibility and the possibility of dry cutting. The main tool materials used for this purpose are CBN and ceramic due to their high hardness and, in the case of some grades of these materials, high chemical stability with iron. However, when interrupted surfaces are turned, the tool requires not only these properties but also sufficient toughness to resist impacts against workpiece interruptions. Therefore, the main goal of this work is to compare CBN and ceramic tools in continuous and interrupted cutting. To this end, several turning experiments were carried out on continuous surfaces (in this case, CBN with an added ceramic phase and a mixed ceramic were compared, due to their high chemical stability and hardness) and on interrupted surfaces (here, a high CBN content and a SiC-reinforced ceramic were compared due to their good ability to withstand impacts), applying different cutting speeds. The main conclusions of this work were that in both continuous and interrupted cutting, the CBN tools exhibited a much better performance with respect to both tool life and workpiece surface roughness than the ceramic tools. 相似文献
13.
Force modeling in metal cutting is important for a multitude of purposes, including thermal analysis, tool life estimation, chatter prediction, and tool condition monitoring. Numerous approaches have been proposed to model metal cutting forces with various degrees of success. In addition to the effect of workpiece materials, cutting parameters, and process configurations, cutting tool thermal properties can also contribute to the level of cutting forces. For example, a difference has been observed for cutting forces between the use of high and low CBN content tools under identical cutting conditions. Unfortunately, among documented approaches, the effect of tool thermal property on cutting forces has not been addressed systemically and analytically. To model the effect of tool thermal property on cutting forces, this study modifies Oxley’s predictive machining theory by analytically modeling the thermal behaviors of the primary and the secondary heat sources. Furthermore, to generalize the modeling approach, a modified Johnson–Cook equation is applied in the modified Oxley’s approach to represent the workpiece material property as a function of strain, strain rate, and temperature. The model prediction is compared to the published experimental process data of hard turning AISI H13 steel (52 HRc) using either low CBN content or high CBN content tools. The proposed model and finite element method (FEM) both predict lower thrust and tangential cutting forces and higher tool–chip interface temperature when the lower CBN content tool is used, but the model predicts a temperature higher than that of the FEM. 相似文献
14.
Nilrudra Mandal B. DoloiB. Mondal 《International Journal of Refractory Metals and Hard Materials》2011,29(2):273-280
Flank wear is an important criterion for machinability assessment of a material. The present study is an attempt to evaluate the influence of factors such as cutting speed, feed rate and depth of cut on flank wear during hard turning of EN 24 steel with newly developed transformed toughened nano-composite Zirconia Toughened Alumina (ZTA) ceramic inserts. ZTA provides a cost effective materials solution to the most demanding applications which require wear resistance, corrosion resistance, high temperature stability and superior mechanical strength. Several machining experiments were performed and mathematical models for flank wear have been postulated by using Response Surface Methodology (RSM). The analysis was based on a first order model in which the flank wear (Vb) is expressed as a function of three independent variables i.e. cutting speed (V), feed rate (F) and depth of cut (T). Analysis of Variance (ANOVA) was applied to check the adequacy of the mathematical model and their respective parameters. Key parameters and their interactive effect on flank wears have also been presented in graphical contours which may help for choosing the process parameters and predict the cutting condition for maximum tool life. 相似文献
15.
In this work, a comprehensive model is established to predict the surface roughness achieved by single point diamond turning. In addition to the calculation of the roughness components in relation to the kinematics and minimum undeformed chip thickness, the newly developed model also takes the effects of plastic side flow and elastic recovery of materials as machined into account. Moreover, the ‘size effect’ has also been successfully integrated into the model, i.e. an inflection point appears in the trend line of predicted surface roughness as the ratio of maximal undeformed chip thickness to cutting edge radius (hDmax/rn) is equal to one unit. Face turning experiments validate that the maximal prediction error is only 13.35%. As the ratio of hDmax/rn is higher than one unit, both the prediction and experiments reveal that a conservation law exists in diamond turned surface roughness, owing to the competitive effects of kinematics, minimum undeformed chip thickness, plastic side flow and elastic recovery of materials on surface formation. Under the conservation law, the freedom control for an invariable surface roughness can be fulfilled in response to a quantitative ratio of hDmax/rn, either through an accurate configuration of feed rate and depth of cut with fixed tool nose radius and cutting edge radius, or by a reasonable selection of tool nose radius and controlled cutting edge radius with designed feed rate and depth of cut. 相似文献
16.
Residual stress and surface roughness when facing age hardened Inconel 718 with CBN and ceramic cutting tools 总被引:3,自引:1,他引:3
R. M. Arunachalam M. A. Mannan A. C. Spowage 《International Journal of Machine Tools and Manufacture》2004,44(9):879-887
The demand for increasing productivity when machining heat resistant super alloys has resulted in the use of advanced cutting tools such as ceramics and cubic boron nitride (CBN). However, the effects of these tools on the surface integrity, especially the residual stresses created, in the high speed facing operation of Inconel 718 has not been dealt with. In this paper, the residual stresses and the surface roughness when facing age hardened Inconel 718 using CBN and mixed ceramic cutting tools at their respective optimum performance based on productivity has been investigated. The residual stress and surface finish generated during facing with CBN cutting tools have been investigated as a function of speed, depth of cut, coolant, tool geometry and nature of the tool coating. In addition, mixed ceramic cutting tools have been investigated for comparison. The results show that mixed ceramic cutting tools induce tensile residual stresses with a much higher magnitude than CBN cutting tools. The residual stresses and the surface roughness generated by CBN cutting tools are more sensitive to cutting speeds than depth of cut. The use of coolant results in either compressive residual stresses or lowers the magnitude of the tensile residual stresses, whereas dry cutting always resulted in tensile residual stresses. From this investigation, it is suggested that round CBN cutting tools should be used at slow cutting speeds (150 m/min) and small depths of cut (0.05 mm) and with the use of coolant to achieve compressive or minimal tensile residual stresses and good surface finish. 相似文献
17.
This paper presents a performance assessment of rotary tool during machining hardened steel. The investigation includes an analysis of chip morphology and modes of tool wear. The effect of tool geometry and type of cutting tool material on the tool self-propelled motion are also investigated. Several tool materials were tested for wear resistance including carbide, coated carbide, and ceramics. The self-propelled coated carbide tools showed superior wear resistance. This was demonstrated by evenly distributed flank wear with no evidence of crater wear. The characteristics of temperature generated during machining with the rotary tool are studied. It was shown that reduced tool temperature eliminates the diffusion wear and dominates the abrasion wear. Also, increasing the tool rotational speed shifted the maximum temperature at the chip–tool interface towards the cutting edge. 相似文献
18.
Vincent Dessoly Shreyes N. Melkote Christophe Lescalier 《International Journal of Machine Tools and Manufacture》2004,44(14):1463-1470
This paper addresses modeling of the tool temperature distribution in self-propelled rotary tool (SPRT) machining of hardened steels. Since tool life is significantly influenced by cutting temperatures, a model is developed to analyze the heat transfer and temperature distribution in rotary tool turning of hardened 52100 steel (58 HRC). The model is based on the moving heat source theory of conduction and employs the finite element method (FEM) for its solution. The model is experimentally verified through measurements of the cutting tool temperature distribution using an infrared camera under different cutting conditions. Finally, both rotary and equivalent fixed tool cutting processes are compared in terms of cutting tool temperatures generated. 相似文献
19.
PCBN刀具干车淬硬钢时倒棱前角对切削力和刀具磨损的影响 总被引:1,自引:0,他引:1
PCBN刀具磨出负倒棱是为了加强刀具的刃口强度,以减少刀具加工时可能出现的破损情况。本文通过对PCBN刀具加工淬硬轴承钢GCr15的一系列试验数据加以分析,得出倒棱前角和切削力、刀具磨损之间的关系,进而得出在实际加工情况下应该采用的最佳倒棱前角值。试验表明:当倒棱前角取15度且切削速度为125m/s时,刀具具有最好的加工效果,不但切削力可以达到最小值,刀具磨损最轻,而且刀具寿命也达到了最大值。 相似文献
20.
A.P. PaivaAuthor VitaeP.H. CamposAuthor Vitae J.R. FerreiraAuthor VitaeL.G.D. LopesAuthor Vitae E.J. PaivaAuthor VitaeP.P. BalestrassiAuthor Vitae 《International Journal of Refractory Metals and Hard Materials》2012,30(1):152-163
This paper presents an experimental study of AISI 52100 hardened steel turned with wiper mixed ceramic (Al2O3 + TiC) inserts coated with TiN, using Multivariate Robust Parameter Design (MRPD). The main characteristic of this new optimization approach consists of considering both controllable (xi) and noise (zi) variables of the hard turning process to find out the parameter levels which minimize the distance of each response (yi) from its respective targets (Ti) while keeps each variance caused by the noise variables as low as possible. Using a crossed array, a response surface design formed by cutting speed (Vc), feed rate (f) and depth of cut (d) is submitted to the influence of four scenarios built with an 22 full factorial design of two noise factors — workpiece hardness decreasing (Z1) and tool flank wear (Z2). This experimental arrangement allows the generating of mean, variance and mean square error (MSE) of five surface roughness parameters (Ra, Rz, Ry, Rt and Rq). As these responses are highly correlated, to extract and employ this information, Principal Component Analysis (PCA) was used. Adopting the Multivariate Mean Square Error (MMSE) as optimization criteria, a robust solution could be found. Theoretical and experimental results were convergent and confirmed. With Vc = 199.9 m/min, f = 0.191 mm/rev and d = 0.190 mm, the five surface roughness parameters and respective variances were minimal, with better results than those obtained with individual optimization. 相似文献