首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tungsten heavy alloys (WHAs) with three different compositions (90W-7Ni-3Fe, 93W-4.9Ni-2.1Fe and 95W-3.5Ni-1.5Fe, wt.%) were heavily deformed by one-pass rapid hot extrusion at 1100 °C with an extrusion speed of ~ 100 mm/s and an extrusion ratio of ~ 3.33:1. The influence of tungsten content on the microstructure and tensile fracture characteristics of the as-extruded alloys was investigated in detail. The results show that the tungsten particles in the as-extruded 95W have the largest shape factor compared to the as-extruded 90W and 93W alloys and this implies that the tungsten particles in the as-extruded 95W alloy were subjected to the heaviest plastic deformation. In addition, ultimate tensile strength (UTS) and hardness (HRC) are significantly improved after rapid hot extrusion. The as-extruded 95W alloy processes the highest strength (1455 MPa) and hardness (HRC40) but the lowest elongation (5%), followed by the as-extruded 93W (UTS1390MPa; HRC39; 7%) and 90W alloys (UTS1260MPa; HRC36; 10%). The fracture morphology shows the distinct fracture features between the as-sintered alloys and the as-extruded alloys. For the as-sintered alloys, the fracture modes are various while transgranular cleavage of tungsten particles is the main characteristic in the as-extruded alloy. Meanwhile, the fracture modes of the three as-extruded alloys vary slightly with the tungsten content. TEM bright field images indicate that many lath-like subgrains with the width of 150-500 nm are present in the three as-extruded alloys, particularly in the as-extruded 93W and 95W alloys. Furthermore, the dislocations are absent in the γ-(Ni, Fe) phase. This means that dynamic recovery-recrystallization process took place during rapid hot extrusion.  相似文献   

2.
Tungsten heavy alloys (WHAs) are metal–metal composites consisting of nearly pure spherical tungsten particles embedded in a Ni–Fe–W or Ni–Co–W or Ni–Cu–W ductile matrix. In this dual phase alloy, there are several complicated relations between the ductile matrix and hard tungsten particles. The aim of this research was to examine the effect of varying tungsten content on the microstructure and mechanical properties of tungsten heavy alloys. The microstructural parameters (grain size, connectivity, contiguity and solid volume fraction) were measured and were found to have a significant effect on the mechanical properties of tungsten-based heavy alloys. The result shows that the binding strength between the W and the matrix phase has a major influence on the ductility of tungsten-based alloys. The larger this binding force is, the better the ductility is.  相似文献   

3.
In many high temperature applications tungsten is superior to molybdenum alloys. For structural components very often joining technology is the limiting factor. If brazing or welding is used ductility at room temperature has to be considered. Particularly when handling or transporting they run the risk of brittle fracture.  相似文献   

4.
采用Ti-28Ni(wt.%)共晶钎料在1100℃实现了高铌TiAl合金(Ti-45Al-8.5Nb-(W, B, Y) (at.%), 简称TAN)的真空钎焊连接。钎焊接头的典型界面结构为TAN/τ3-Al3Ti2Ni + B2/α2-Ti3Al layer/α2-Ti3Al + δ-Ti2Ni/α2-Ti3Al layer/τ3-Al3Ti2Ni + B2/TAN。深入研究了保温时间对钎焊接头界面组织和连接性能的影响。结果表明:Ni元素从熔融钎料向TAN母材的扩散决定了界面组织的演化,随着保温时间的延长促进了扩散层的增厚,同时导致钎缝宽度逐渐减小。接头剪切强度测试结果显示当保温时间为15分钟时,获得的最大接头室温剪切强度和高温(600℃)剪切强度分别是248.6MPa和166.4MPa。接头断口分析表明在剪切实验中裂纹主要沿着连续的金属间化合物层产生和扩展。  相似文献   

5.
In this study, 90W–7Ni–3Fe heavy alloy was investigated for its microstructure development, mechanical properties and fracture behavior after solid state sintering. The nano-sized powders were synthesized by mechanical alloying (MA). The microstructure of solid state sintered heavy alloys consisted of tungsten matrix. The average tungsten grain size in the range of 1.7–3.0 μm was obtained. It was found that the grain size largely affected the mechanical properties. Tensile strength more than 1200 MPa was achieved at a sintering temperature of 1350 °C. Fracture mechanisms based on microscopical observations on the fracture surfaces were studied. Matrix failure, tungsten-intergranular cleavage and tungsten–matrix interfacial separation were found to be the possible failure mechanisms.  相似文献   

6.
93W-4.5Ni-1.5Fe-1Co(W) was prepared by powder metallurgic method, and then dynamic mechanical properties of this material were tested at high temperature by means of high-temperature split Hopkinson pressure bar(SHPB). The results show that the material possesses highdynamic mechanical properties, significant temperature effects, and strain hardening behaviors. Used two-stage light gas gun, the penetration test of 93 W projectile was finished. After the completion of the test, through the microstructure observation of the residual 93 W projectiles with the aid of scanning electron microscopy(SEM) and transmission electron microscopy(TEM), it can be found that there are obvious signs of hot melt existing on the surface of the projectile, a lot of adiabatic shear bands inside the projectile, and microcracks exist at the end of adiabatic shear bands. The test results show that adiabatic shear is the main form to cause the projectile failure and it is the emergence of the adiabatic shearing phenomenon that makes 93 W display good self-sharpening property in the process of hypervelocity penetration. At the same time,the results of TEM observation show that there are highdensity dislocations at the interface between W and Ni–Fe–Co-based alloy inside the 93 W.  相似文献   

7.
Tungsten and tungsten alloy coatings are candidate materials for plasma facing components of divertor plates in future fusion reactors. In normal operation, the sprayed coatings will be submitted to intense heat fluxes and particle bombardment. This work investigated the relationship between the microstructure of plasma-sprayed tungsten coatings and their thermal diffusivity as determined by the laser flash method. The microstructural investigation was carried out on copper-infiltrated coatings. Such a preparation technique permitted the measurement of the total true contact area between the lamellae within the tungsten coatings. The spraying atmosphere was found to strongly influence the interfacial contact between lamellae and coating thermal diffusivity.  相似文献   

8.
A diffusion bonding process, for joining of tungsten to ferritic steel using nickel as an interlayer, was developed for nuclear component application. The effect of joining temperature on the microstructure and tensile strength of the joint was investigated in this work. Metallographic analysis revealed that a good bonding was obtained at both the tungsten/nickel and nickel/steel interfaces, and the diffusion products were identified in the diffusion zone. Nano-indentation test across the joining interfaces demonstrated the effect of solid solution hardening in the diffusion zone. Tensile test showed that the maximum average tensile strength of ∼200 MPa was obtained for the joint diffusion bonded at 900 °C. The results were discussed in terms of the joining temperature and of the residual stress generated during joining process.  相似文献   

9.
为揭示固溶温度(850、920、960℃)对TC4钛合金微观组织和动态拉伸力学性能的影响,采用XRD、SEM和EBSD方法对材料晶体结构、微观组织和晶粒取向等特征进行分析,选取分离式霍普金森拉杆(SHTB)实验装置进行了材料的动态拉伸力学性能测试,构建了Johnson-Cook(J-C)本构模型,开展了动态拉伸断口形貌分析。结果表明:随固溶温度的升高,材料中α/α′含量升高,初生α相含量降低,针状α′含量升高,晶粒尺寸减小且择优取向强度增大;TC4钛合金具有明显的应变率强化效应,随固溶温度的升高,材料屈服强度和维氏硬度逐渐增大,断裂延伸率降低;动态拉伸断口整体表现为韧性断裂,随固溶温度升高,材料塑性降低,在固溶温度960℃时,试样韧性断裂特征不显著。本研究结果可为TC4钛合金力学性能调控及抗冲击设计提供方法和数据支撑。  相似文献   

10.
The influence of Y on microstructure and mechanical properties of as-cast Mg-5Li-3Al-2Zn alloy was investigated. The results show that the phase compositions of Mg-5Li-3Al-2Zn consist of α-Mg and AlLi phases. Adding Y to the alloy results in the formation of Al2Y compound and facilitates grain refinement. The addition of 0.8 wt.% Y produces the smallest grain size. The tensile tests performed at room temperature show that the additions of Y can improve the mechanical properties of the alloy; the tensile strength and ductility reach peak values when the Y additions are 0.8 wt.% and 1.2 wt.%, respectively. The mechanisms of improvement are related to grain refinement and compound strengthening effects.  相似文献   

11.
This study deals with the microstructure and mechanical properties of WC–(W, Ti, Ta) C–9 vol.% Co cemented carbides fabricated by conventional sintering. The conventional WC particles of 4 μm size and ultrafine particles of 0.2 μm were introduced in the system with varying ratio. The ratios of conventional WC particles to ultrafine WC particles were 2:1, 1:1, and 1:2. The microstructures of sintered WC–(W, Ti, Ta) C–9 vol.% Co cemented carbides were sensitively dependent on the ratio of conventional WC particles to ultrafine WC particles. The rim phase increased with the increase in the amount of ultrafine particles. Hardness of WC–(W, Ti, Ta) C–9 vol.% Co cemented carbide increased with increase in the amount of rim phase and decrease in the average grain size of WC particles. The bending strength showed the similar trend of the hardness. The fracture morphologies are reported. The fracture behavior changed from mixed mode to transgranular fracture mode, when the ratio of conventional WC particles to ultrafine WC particles was changed from 2:1 to 1:2.  相似文献   

12.
Microstructure and properties of flame sprayed tungsten carbide coatings   总被引:3,自引:0,他引:3  
This article reports on feasibility experiments carried out with oxy-acetylene spray system with various oxygen to fuel ratios using two different tungsten carbide powders and powder feeding methods, to evaluate the newly developed fused WC, synthesised by transferred arc thermal plasma method. Transferred arc thermal plasma method is more economical and less energy intensive than the conventional arc method and results in a fused carbide powder with higher hardness. The microstructure and phase composition of powders and coatings were analysed by optical and scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Carbon content of the powders and coatings were determined to study the decarburisation of the material during spraying process. Coatings were also characterised by their hardness and abrasive wear. The effects of metallurgical transformation and phase content are related to wear performance. The results demonstrate that the powders exhibit various degree of phase transformation during the spray process depending on the type of powder, powder feeding and spray parameters. The carbon loss during the spray process in excess of 45% resulted in reduced hardness and wear resistance of the coatings. Coatings with high amount of WC and W2C along with FeW3C showed higher wear resistance. Thus, coatings of high wear resistance can be produced using fused tungsten carbide powder with WC and W2C phases, which can be economically synthesised by thermal plasma transferred arc method.  相似文献   

13.
对TC10钛合金进行不同工艺的退火处理,通过扫描电子显微镜(SEM)、X射线衍射仪(XRD)、透射电子显微镜(TEM)以及冲击性能测试,研究经不同退火工艺处理后,该合金微观组织与冲击性能的关系。结果表明:经单重退火处理后,组织由初生α相(αp)与次生α相(αs)构成,证实并无α"相与α"相析出,经双重退火处理后,αp相几乎不变,αs相转变为粗片层αs相与细片层αs相;合金经单重退火处理后的冲击性能总体高于双重退火,经两相区温度加热后的冲击性能高于单相区;在两种退火工艺中,当加热温度为两相区时,断口微观形貌主要由等轴状韧窝构成,当加热温度为单相区时,断口微观形貌以岩石状形貌为主,并有较浅的小韧窝分布在表面。  相似文献   

14.
殷剑  金康  黎诚  董奇  沈智  张波 《金属热处理》2022,47(7):144-150
采用扫描电镜(SEM)、能谱分析(EDS)、X射线衍射(XRD)、电子背散射衍射(EBSD)、拉伸和弯曲试验等研究了时效处理对7022铝合金组织及弯曲性能的影响。结果表明,固溶处理后7022铝合金基体中依然含有大量黑色不溶第二相,且这些相主要由α-Al、MgZn2、Al2CuMg和Al7Cu2Fe相组成。随着时效的进行,Al2CuMg和Al7Cu2Fe相逐渐溶解,与MgZn2相性质相似的Mg(Zn, Cu, Al)2相析出,同时晶粒逐渐长大,产生明显的析出强化效应。试样的抗弯强度主要受到第二相颗粒的数目、尺寸以及晶粒尺寸的影响。110 ℃×10 h时效条件下,合金拥有弥散分布的细小第二相颗粒和合适的晶粒尺寸,具有较好的抗弯强度和抗拉强度,其数值分别为21.7 MPa、608 MPa。  相似文献   

15.
SiC coating for the graphite materials was prepared by slurry-sintering technique in a vacuum. The phase, microstructure, thickness and resistance against irradiation of the SiC coatings prepared from 1500 to 1800 °C were investigated. Research results showed that, the porous β-SiC coating occurred at 1500 and 1600 °C, while compact β-SiC/Si coatings obtained at 1700 and 1800 °C. The thickness of the coatings was in most cases around 150 μm when the sintering was performed at 1500 and 1600 °C. However, the thickness was decreased, and the crystal size of SiC particles was increased when the sintering temperature was higher than 1600 °C. Thermal fatigue tests showed that, based on the surface morphology changes, the sintering temperature of 1700 and 1800 °C gave much improved irradiation resistance over that of coatings formed at 1500 and 1600 °C.  相似文献   

16.
The effect of an addition of SiC nanowire on the microstructure and mechanical properties of tungsten-based composites is investigated in this study. SiC-nanowire-augmented tungsten composites were prepared by a spray-drying process and an in situ spark plasma sintering process. Three distinctive reaction phases, tungsten, tungsten carbide (W2C) and rod-type tungsten silicide (W5Si3) were formed during the sintering process. The flexural strength was significantly increased from 706 MPa to 924 MPa in tungsten composites augmented with SiC nanowires, as was the formation of W2C and W5Si3 phases. The rod-type W5Si3 bears significant stress by both sharing a portion of the load and providing a bridging mechanism. Furthermore, a high ablation resistance at an elevated temperature was observed for tungsten composites augmented with SiC nanowires.  相似文献   

17.
激光原位合成TiC-Ni-Mo涂层界面组织与磨损性能   总被引:3,自引:2,他引:1       下载免费PDF全文
赫庆坤  王勇  赵卫民  程义远 《焊接学报》2009,30(1):77-80100
利用激光熔覆原位合成了TiC-Ni-Mo复合涂层,借助于EPMA,TEM分析以及磨损试验,研究了TiC-Ni-Mo涂层的界面组织与磨损性能.结果表明,在涂层中添加5%Mo,可以细化TiC晶粒,改善涂层组织的均匀性,提高涂层硬度和耐磨性,降低摩擦系数,Tic/Ni界面存在如下位向关系:(001)TiC//(111)γ-Ni.添加10%Mo,涂层硬度和耐磨性下降.TiC颗粒中存在大量呈一定方向分布的位错,γ-Ni相内部的位错杂乱分布;熔覆层的耐磨机制为增强相的抗磨作用,磨损形貌为短而浅的犁沟.  相似文献   

18.
Wear parts which are exposed to severe abrasive conditions must withstand high wear demands. Abrasive loading superposed with impact due to abrasive particles are a dominating wear mechanism restricting lifetime in many different industries, for example mining and farming. In practical application, different welding technologies such as plasma transfer arc (PTA), metal active gas (MAG) and laser are used to form wear resistant materials. The aim of this study is to evaluate the influence of welding parameters on the microstructure and wear behaviour of these wear resistant materials using MAG welding technology. To simulate real field conditions on a lab-scale, tests were performed with a standard ASTM G65 dry-sand rubber-wheel tester (3-body abrasion). In order to investigate impact abrasion, a special impeller-tumbler apparatus was designed and used for wear tests (combined impact and abrasion wear). Wear tests were performed on Ni-based alloys containing large amounts of hard phase.Within this work it was shown that welding parameters such as current intensity and number of layers strongly influence dilution with the base material and furthermore the formation of transition zones between welding layers and overlap zones. Concerning wear behaviour it was found that high content of uniformly distributed tungsten carbides in a metallic matrix show the best behaviour under a condition of pure abrasion, whereas under cyclic impact loading (high energy level) massive breaking of the tungsten carbides results in a high wear regime, compared to martensitic materials which perform best.  相似文献   

19.
This study investigates the influences of brazing temperature and time on microstructures and mechanical properties of commercially pure (CP) titanium. Bonding was performed in a high-vacuum furnace using Incusil-ABA (Ag–27.2Cu–12.5In–1.25Ti, wt.%), as filler metal. Brazing temperatures employed in this study were 710, 750, and 800 °C. At the same time, the investigated holding times at the brazing temperatures were 5, 30, and 90 min. Microstructure and phase constitution of the bonded joints were analyzed by means of metallography, scanning electron microscope (SEM) and X-ray diffraction pattern (XRD). An intense diffusion of Ti to the interface and a strong reaction between the braze alloy and the base metal were observed especially at a temperature of 800 °C. A number of intermetallic phases such as TiCu, Ti2Cu, Ti3In, Cu–In, and TiAg have been identified. Both brazing temperature and holding time are critical factors to control the microstructure and hence the mechanical properties of the brazed joints. The optimum brazing parameter was achieved at a temperature of 750 °C and a holding time of 90 min.  相似文献   

20.
Five-layered Al/Al-Cu functionally graded material (FGM) was prepared by powder metallurgy technology, and the subsequent heat treatment was carried out for the graded material. The microstructures and distribution of Cu element under pressure sintering (F), solution treatment (T4) and artificial aging treatment (T6) were investigated, and the Vickers hardness and flexural properties of different states were tested. The results showed that sintered compact with dense structure and compositional continuous c...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号