首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, based on the three-dimensional theory of elasticity, static and free vibration characteristics of continuously graded fiber-reinforced (CGFR) cylindrical shells are considered by making use of a generalized power-law distribution. In the present formulation, the cylindrical shell is assumed to be made of an orthotropic material. The CGFR cylindrical shells have a smooth variation of matrix volume fraction in the radial direction. Symmetric and asymmetric volume fraction profiles are presented in this paper. Suitable displacement functions that identically satisfy the boundary conditions at the simply supported edges are used to reduce the equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which can be solved by a generalized differential quadrature method. The fast rate of convergence of the method is demonstrated, and comparison studies are carried out to establish its very high accuracy and versatility. The main contribution of this work is to illustrate useful results for a cylindrical shell continuously graded fiber reinforced in the radial direction. Finally, these results are compared with a similar discrete laminated composite cylindrical shell.  相似文献   

2.
In this paper three-dimensional steady-state response of a functionally graded fiber reinforced cylindrical panel are studied. The functionally graded orthotropic panel is simply supported at the edges and assumed to have a linear variation of reinforcement volume fraction in the radial direction. Suitable temperature and displacement functions that identically satisfy the simply supported boundary conditions are used to reduce the thermoelastic equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which can be solved by differential quadrature method. Results are presented for the fiber reinforced functionally graded cylindrical panel with graded fiber volume fractions and compared with traditional discretely laminated composite panel. Results indicate the advantages of using functionally graded fiber reinforced composite shell with graded fiber volume fractions over traditional discretely laminated composite shells.  相似文献   

3.
Elasticity solution for free vibrations analysis of functionally graded fiber orientation and volume fraction cylindrical panel is presented, using differential quadrature method. The orthotropic panel is simply supported at the edges and assumed to have arbitrary variations of fiber orientation and volume fraction in the radial direction. Suitable displacement functions that identically satisfy the simply supported boundary conditions are used to reduce the equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which can be solved by differential quadrature method to obtain the natural frequencies. The fast rate of convergence of the method is demonstrated and comparison studies are carried out to establish its very high accuracy and versatility. Numerical results are presented for an orthotropic cylindrical panel with arbitrary variations of fiber orientation and volume fraction in the shell’s thickness and compared with discrete laminates composite panels. The interesting and new results show that normalized natural frequency of the functionally graded fiber orientation cylindrical panel is smaller than that of a discrete laminate composite panel and close to that of a 4-layer. In contrast, the normalized natural frequency of a functionally graded fiber volume fractions is larger than that of a discrete laminated and close to that of a 2-layer.  相似文献   

4.
In this paper, free vibration analysis of fiber reinforced composite (FRC) conical shells resting on Pasternak-type elastic foundation is investigated. Two kinds of fiber distribution in the thickness direction, namely, uniformly distributed and functionally graded are considered. The material properties of FRC conical shells are estimated through a volume fraction power law. The equations of motion are derived through variational formulation. The governing equations are developed based on the classical shells theory and Sanders assumptions. Galerkin and Ritz methods are employed to solve the governing equations and determine natural frequencies of the conical shell. The conical shell assumed to be clamped at the both ends. Results are presented on the effect of fiber volume fraction, semi-vertex angle, thickness to radius ratio and elastic foundation stiffness parameters on the frequency characteristics of the conical shells. A comparative study between Ritz and Galerkin methods is carried out. Validity of the present study is confirmed by comparing the results with the data available in the open literature for a special case. A good agreement is observed between them.  相似文献   

5.
Based on the first-order shear deformation theory, the free vibration of the functionally graded (FG) truncated conical shells is analyzed. The truncated conical shell materials are assumed to be isotropic and inhomogeneous in the longitudinal direction. The two-constituent FG shell consists of ceramic and metal. These constituents are graded through the length, from one end of the shell to the other end. Using Hamilton's principle the derived governing equations are solved using differential quadrature method. Fast rate of convergence of this method is tested and its advantages over other existing solver methods are observed. The primary results of this study were obtained for four different end boundary conditions, and for some special cases, acquired results were compared with those available in the literature. Furthermore, effects of geometrical parameters, material graded power index, and boundary conditions on the natural frequencies of the FG truncated conical shell are carried out.  相似文献   

6.
A postbuckling analysis is presented for nanocomposite cylindrical shells reinforced by single-walled carbon nanotubes (SWCNTs) subjected to combined axial and radial mechanical loads in thermal environment. Two types of carbon nanotube-reinforced composite (CNTRC) shells, namely, uniformly distributed (UD) and functionally graded (FG) reinforcements, are considered. The material properties of FG-CNTRCs are assumed to be graded in the thickness direction, and are estimated through a micromechanical model. The governing equations are based on a higher order shear deformation shell theory with a von Kármán-type of kinematic nonlinearity. The thermal effects are also included and the material properties of CNTRCs are assumed to be temperature-dependent. A boundary layer theory and associated singular perturbation technique are employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of perfect and imperfect, FG-CNTRC cylindrical shells under combined action of external pressure and axial compression for different values of load-proportional parameters. The results for UD-CNTRC shell, which is a special case in the present study, are compared with those of the FG-CNTRC shell.  相似文献   

7.
In this Part, the extensive parametric studies performed are reported and numerical results are presented for the buckling and postbuckling of fiber reinforced polymer matrix and metal matrix composite laminated shells subjected to axial compression or external pressure under different sets of environmental conditions. Two kinds of fiber reinforced composite laminated shells, namely, uniformly distributed (UD) and functionally graded (FG) reinforcements, are considered. The numerical results show that the buckling loads as well as postbuckling strength of the shell can be increased as a result of functionally graded fiber reinforcements. The results reveal that the effect of functionally graded fiber reinforcements on the buckling loads and postbuckling strength of shell with polymer matrix is more pronounced compared to the shell with metal matrix in the case of axial compression. In contrast, in the case of external pressure, the functionally graded fiber reinforcements may have a significant effect on the buckling pressure and postbuckling strength of the shell with metal matrix.  相似文献   

8.
The present research develops a three-dimensional multi-field formulation of a functionally graded piezoelectric thick shell of revolution by using tensor analysis. An orthogonal curvilinear coordinate system was employed, and basic geometric equations were derived for an arbitrary thick shell of revolution with variable thickness and curvature. Mechanical and electrical properties were assumed to vary along a three-dimensional orthogonal coordinate system with arbitrary functional distribution. The functional of the introduced shell was derived by using kinetic and potential energy of the structure based on three orthogonal displacement components, electric potential and material properties. The final differential equations were derived in general state for every arbitrary structure and material property distributions. The obtained equations were reduced for functionally graded and functionally graded piezoelectric cylindrical shells and the mentioned reduced equations were verified by comparison with the literature. Trueness and generality of the present results can be justified by capability of these equations for different geometries and material properties.  相似文献   

9.
A postbuckling analysis is presented for nanocomposite cylindrical shells reinforced by single-walled carbon nanotubes (SWCNTs) subjected to axial compression in thermal environments. Two kinds of carbon nanotube-reinforced composite (CNTRC) shells, namely, uniformly distributed (UD) and functionally graded (FG) reinforcements, are considered. The material properties of FG-CNTRCs are assumed to be graded in the thickness direction, and are estimated through a micromechanical model. The governing equations are based on a higher order shear deformation theory with a von Kármán-type of kinematic nonlinearity. The thermal effects are also included and the material properties of CNTRCs are assumed to be temperature-dependent. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of axially-loaded, perfect and imperfect, FG-CNTRC cylindrical shells under different sets of thermal environmental conditions. The results for UD-CNTRC shell, which is a special case in the present study, are compared with those of the FG-CNTRC shell. The results show that the linear functionally graded reinforcements can increase the buckling load as well as postbuckling strength of the shell under axial compression. The results reveal that the CNT volume fraction has a significant effect on the buckling load and postbuckling behavior of CNTRC shells.  相似文献   

10.
Buckling and postbuckling behavior are presented for fiber reinforced composite (FRC) laminated cylindrical shells subjected to axial compression or a uniform external pressure in thermal environments. Two kinds of fiber reinforced composite laminated shells, namely, uniformly distributed (UD) and functionally graded (FG) reinforcements, are considered. The governing equations are based on a higher order shear deformation shell theory with von Kármán-type of kinematic non-linearity and including the extension-twist, extension-flexural and flexural-twist couplings. The thermal effects are also included, and the material properties of FRC laminated cylindrical shells are estimated through a micromechanical model and are assumed to be temperature dependent. The non-linear prebuckling deformations and the initial geometric imperfections of the shell are both taken into account. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths of FRC laminated cylindrical shells.  相似文献   

11.
In this paper, static and free vibration analysis of a sandwich cylindrical shell is performed using theory of elasticity formulation. The core layer is made of functionally graded material with material properties varying along the thickness direction according to a simple power law. For the case of simply supported boundary conditions, equations of motion and equilibrium equations are solved analytically by applying a state-space technique along the radial direction and Fourier series expansion along the axial and circumferential direction. When boundary conditions are not simply supported, a semi-analytically solution is performed by using the differential quadrature method along the axial direction. The present approach is validated by comparing the obtained numerical results with those published in the available literature. Moreover, effects of boundary conditions, graded direction, mid-radius to thickness and length to mid-radius ratios on bending and vibration behavior are considered.  相似文献   

12.
Summary In this paper, the vibration and stability of a three-layered conical shell containing a functionally graded material (FGM) layer subjected to axial compressive load are studied. The material properties of the functionally graded layer are assumed to vary continuously through the thickness of the shell. The variation of properties follows an arbitrary distribution in terms of the volume fractions of the constituents. The fundamental relations, the dynamic stability and compatibility equations of three-layered truncated conical shells containing an FGM layer are obtained first. Applying Galerkin's method, these equations are transformed to a pair of time dependent differential equations, and critical axial load and frequency parameter are obtained. The results show that the critical parameters are affected by the configurations of the constituent materials and the variation of the shell geometry. Comparing results with those in the literature validates the present analysis.  相似文献   

13.
Dynamic buckling of functionally graded materials truncated conical shells subjected to normal impact loads is discussed in this paper. In the analysis, the material properties of functionally graded materials shells are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. Geometrically nonlinear large deformation and the initial imperfections are taken into account. Galerkin procedure and Runge–Kutta integration scheme are used to solve nonlinear governing equations numerically. From the characteristics of dynamic response obtain critical loads of the shell according to B-R criterion. From the research results it can be found that gradient properties of the materials have significant effects on the critical buckling loads of FGM shells.  相似文献   

14.
A postbuckling analysis is presented for a functionally graded cylindrical shell with piezoelectric actuators subjected to lateral or hydrostatic pressure combined with electric loads in thermal environments. Heat conduction and temperature-dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform distribution over the shell surface and varied in the thickness direction and the electric field considered only has non-zero-valued component EZ. The material properties of functionally graded materials (FGMs) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and the material properties of both FGM and piezoelectric layers are assumed to be temperature-dependent. The governing equations are based on a higher order shear deformation theory with a von Kármán–Donnell-type of kinematic nonlinearity. A boundary layer theory of shell buckling is extended to the case of FGM hybrid laminated cylindrical shells of finite length. A singular perturbation technique is employed to determine the buckling pressure and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of pressure-loaded, perfect and imperfect, FGM cylindrical shells with fully covered piezoelectric actuators under different sets of thermal and electric loading conditions. The results reveal that temperature dependency, temperature change and volume fraction distribution have a significant effect on the buckling pressure and postbuckling behavior of FGM hybrid cylindrical shells. In contrast, the control voltage only has a very small effect on the buckling pressure and postbuckling behavior of FGM hybrid cylindrical shells.  相似文献   

15.
压电梯度薄壳的高阶理论解   总被引:2,自引:2,他引:0       下载免费PDF全文
压电功能梯度执行器能产生较大的位移、降低应力峰值并避免了粘结层带来的问题,压电梯度超声换能器能拓展频带宽度。本文作者提出了一个简单而有效的求解压电梯度薄壳力、电行为特性的高阶理论。设定位移分量为壳厚的线性函数,而电势沿厚度方向为二次分布。考虑了压电作动元的驱动信号不同时所具有的不同形式的电荷平衡方程。应用Fourier级数法得到压电系数沿厚度坐标变化的梯度壳的力电耦合的解析解。所得结果可退化至梁、板等多种特殊情况。利用所得方程分析了一非均匀简支压电层合板,并与三维精确结果作了对比,两者吻合得很好,表明该理论的正确性。最后具体求解了压电梯度圆柱壳的力、电特性,给出了位移、应力、电势沿厚度方向的变化规律。  相似文献   

16.
Free vibration analysis of functionally graded sandwich beams with general boundary conditions and resting on a Pasternak elastic foundation is presented by using strong form formulation based on modified Fourier series. Two types of common sandwich beams, namely beams with functionally graded face sheets and isotropic core and beams with isotropic face sheets and functionally graded core, are considered. The bilayered and single-layered functionally graded beams are obtained as special cases of sandwich beams. The effective material properties of functionally graded materials are assumed to vary continuously in the thickness direction according to power-law distributions in terms of volume fraction of constituents and are estimated by Voigt model and Mori–Tanaka scheme. Based on the first-order shear deformation theory, the governing equations and boundary conditions can be obtained by Hamilton’s principle and can be solved using the modified Fourier series method which consists of the standard Fourier cosine series and several supplemented functions. A variety of numerical examples are presented to demonstrate the convergence, reliability and accuracy of the present method. Numerous new vibration results for functionally graded sandwich beams with general boundary conditions and resting on elastic foundations are given. The influence of the power-law indices and foundation parameters on the frequencies of the sandwich beams is also investigated.  相似文献   

17.
In the present work, a study of free vibrations of functionally graded cylindrical shells made up of isotropic properties is carried out. A semi-analytical axisymmetric finite element model using the 3D linear elastic theory is developed. The 3D equations of motion are reduced to 2D by expanding the displacement field in Fourier series in the circumferential direction, involving circumferential harmonics. The material properties are graded in the thickness direction according to a power law. The model has been verified with simple benchmark problems and the results show that the frequency characteristics are found to be close to published results of isotropic cylindrical shells. New results are included for FGM shells.  相似文献   

18.
《Composites Part B》2013,45(1):657-674
In this paper the authors derive a higher-order shear deformation theory for modeling functionally graded plates accounting for extensibility in the thickness direction.The explicit governing equations and boundary conditions are obtained using the principle of virtual displacements under Carrera’s Unified Formulation. The static and eigenproblems are solved by collocation with radial basis functions.The efficiency of the present approach is assessed with numerical results including deflection, stresses, free vibration, and buckling of functionally graded isotropic plates and functionally graded sandwich plates.  相似文献   

19.
In this paper, buckling behaviors of composite cylindrical shells made from functionally graded materials (FGMs) subjected to pure bending load were investigated. The material properties were assumed to be graded along the thickness. The non-uniform bending force on the shell section was considered in the buckling government equation of FGM cylindrical shells based on the Donnell shallow shell theory. The prebuckling deformation of the FGM cylindrical shells was neglected and the buckling mode was assumed to occur non-uniformly in local district along the shell circumferential direction. The eigenvalue method was used to obtain the buckling critical condition. The theoretical results were in excellent agreement with those of ABAQUS code. Results show that the inhomogenity of the materials is significant for buckling of FGM cylindrical shells.  相似文献   

20.
A 2D Unconstrained Third Order Shear Deformation Theory (UTSDT) is presented for the evaluation of tangential and normal stresses in moderately thick functionally graded cylindrical shells subjected to mechanical loadings. Eight types of graded materials are investigated. The functionally graded material consists of ceramic and metallic constituents. A four parameter power law function is used. The UTSDT allows the presence of a finite transverse shear stress at the top and bottom surfaces of the graded cylindrical shell. In addition, the initial curvature effect included in the formulation leads to the generalization of the present theory (GUTSDT). The Generalized Differential Quadrature (GDQ) method is used to discretize the derivatives in the governing equations, the external boundary conditions and the compatibility conditions. Transverse and normal stresses are also calculated by integrating the three dimensional equations of equilibrium in the thickness direction. In this way, the six components of the stress tensor at a point of the cylindrical shell or panel can be given. The initial curvature effect and the role of the power law functions are shown for a wide range of functionally cylindrical shells under various loading and boundary conditions. Finally, numerical examples of the available literature are worked out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号