首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
2.
A concept for improving the shear stiffness properties of balsa core material for sandwich structures is presented. The concept is based on utilization of the strongly orthotropic properties of the balsa wood, applying an appropriate transverse layup sequence. The effective core material shear modulus is modeled using basic laminate theory. This is subsequently validated through sandwich beam bending and lap shear experiments. Compared to the standard balsa core systems, a substantial increase in the shear stiffness is demonstrated, whereas the transverse stiffness is reduced. The concept is suitable for mass production, using standard plywood fabrication technology.  相似文献   

3.
4.
The objective of this work is to investigate the dynamic large deflection response of fully clamped metal foam core sandwich beam struck by a low-velocity heavy mass. Analytical solution and ‘bounds’ of dynamic solutions are derived, respectively. Also, finite element analysis is carried out to obtain the numerical solution of the problem. Comparisons of the dynamic, the quasi-static and numerical solutions for the non-dimensional maximum deflection of the sandwich beam with non-dimensional initial kinetic energy of the striker are presented for different cases of mass ratio, impact velocity and location. It is seen that the dynamic solution approaches the quasi-static one as the mass ratio of the striker to the beam is large enough, the quasi-static solution is in good agreement with the numerical results and both solutions lie in the ‘bounds’ of dynamic solutions. The quasi-static and numerical results for the impact force against the maximum deflection of the sandwich beam are obtained. It shows that the quasi-static solution can offer adequate accuracy to predict the low-velocity heavy-mass impact response of fully clamped sandwich beam.  相似文献   

5.
Aluminium foam core sandwich panels are good energy absorbers for impact protection applications, such as light-weight structural panels, packing materials and energy absorbing devices. In this study, the high-velocity impact perforation of aluminium foam core sandwich structures was analysed. Sandwich panels with 1100 aluminium face-sheets and closed-cell A356 aluminium alloy foam core were modelled by three-dimensional finite element models. The models were validated with experimental tests by comparing numerical and experimental damage modes, output velocity, ballistic limit and absorbed energy. By this model the influence of foam core and face-sheet thicknesses on the behaviour of the sandwich panel under impact perforation was evaluated.  相似文献   

6.
The influence of triggering topologies on the peak load and energy absorption of sandwich panels loaded in in-plane compression is investigated. Sandwich panels with different geometrical triggering features are manufactured and tested experimentally. Damage initiation in panels with grooves is investigated using finite element models.  相似文献   

7.
Impact response of three-dimensional stitched sandwich composite   总被引:1,自引:0,他引:1  
The paper aims at evaluating the damage resistance of sandwich structures composed of stitched foam core and glass facesheets subjected to low-velocity impact. To obtain a suitable baseline comparison, the equivalent set of properties was measured for an equivalent unstitched sandwich.Based on the force and energy histories, parameters have been introduced as following: load at incipient damage, maximum load, penetration depth at maximum load, total energy absorbed during impact and impact damage area. The impact resistance of the sandwich structure is greatly improved by the presence of the stitches. Skin/core delamination is limited and initial energy is used to degrade core’s stitches. Moreover the global behavior under impact is influenced by the stitching geometrical parameters.  相似文献   

8.
In this paper, sandwich plates made from 0.8 mm 2024 T3 aluminium alloy skin sheets and graded polymeric hollow sphere cores (having various density gradients) are studied. The experiments at 45 m/s were performed with an inversed perforation setup using SHPB system. Quasi-static tests using the same clamping system allow for the rate effect investigation. Numerical simulations are performed in order to get the indispensable local information (which is not experimentally available) to better understand the perforation process.  相似文献   

9.
Metallic sandwich structures with aluminium foam core are good energy absorbers for impact protection. To study their ballistic performance, quasi-static and impact perforation tests were carried out and the results are reported and analysed in this paper. In the experiments, effects of several key parameters, i.e. impact velocity, skin thickness, thickness and density of foam core and projectile shapes, on the ballistic limit and energy absorption of the panels during perforation are identified and discussed in detail.  相似文献   

10.
11.
The structural response of dynamically loaded monolithic and sandwich beams made of aluminum skins with different cores is determined by loading the end-clamped beams at mid-span with metal foam projectiles. The sandwich beams comprise aluminum honeycomb cores and closed-cell aluminum foam cores. Laser displacement transducer was used to measure the permanent transverse deflection of the back face mid-point of the beams. The resistance to shock loading is evaluated by the permanent deflection at the mid-span of the beams for a fixed magnitude of applied impulse and mass of beam. It is found that sandwich beams with two kind cores under impact loading can fail in different modes. Experimental results show the sandwich beams with aluminum honeycomb cores present mainly large global deformation, while the foam core sandwich beams tend to local deformation and failure, but all the sandwich beams had a higher shock resistance, then the monolithic beam. For each type of beams, the dependence of transverse deflection upon the magnitude of the applied impulse is measured. Moreover, the effects of face thickness and core thickness on the failure and deformation modes were discussed. Results indicated that the structural response of sandwich beams is sensitive to applied impulse and structural configuration. The experimental results are of worth to optimum design of cellular metallic sandwich structures.  相似文献   

12.
This paper reports numerical results of low velocity impact on open-face sandwich plates with an impactor of 2.65 kg mass hitting with 6.7 m/s velocity. The numerical simulation is done using 3D finite element models in LS-DYNA. The sandwich plates used for the present work have a core made of commercial aluminum alloy foam (Alporas) with faceplates made of either ductile aluminum (Al) or brittle carbon fiber reinforced plastic (CFRP). Selection of suitable constitutive models and erosion criterion for the failure analysis is investigated. A simplified analytical model for the peak load prediction under punch-through failure mode is presented. Numerically predicted contact force versus time, energy absorbed versus time along with the failure modes are compared with the experimental measurements and observations. Within experimental scatter, there is a good agreement between the numerical predictions and experimental measurements. Further more, the analytically predicted peak load values are in excellent agreement with the experimental measurements.  相似文献   

13.
This paper investigates the influence of exfoliated nano-structures on sandwich composites under impact loadings. A set of sandwich composites plates made of fiberglass/nano-modified epoxy face sheets and polystyrene foams was prepared. The core was 25 mm thick and the face sheets were made of eight layers of woven fabric glass fibers and nano-modified epoxy (≈0.8 mm of thickness). The epoxy system was bisphenol A resin and an amine hardener. The fiber volume fraction used was around 65%, while the nanoclay content varied from 0 wt.% to 10 wt.%. The nanoclay used was Cloisite 30B from Southern Clay. The sandwich panels were submitted to low-velocity impact tests with energies from 5 J to 75 J. Two sets of experiments were performed, i.e. high velocity + low mass and low velocity + high mass. Damage caused by the two groups of experiments and peak forces measured were dissimilar. The results show that the addition of 5 wt.% of nanoclay lead to a more efficient energy absorption. The failure modes were also analyzed, and they seems to be affected by the nanoclay addition to face sheets.  相似文献   

14.
纤维增强复合材料三明治板的破片穿甲实验   总被引:3,自引:0,他引:3       下载免费PDF全文
研究了钢板-纤维增强复合材料板-钢板构成的三明治结构对破片的防护性能。通过破片模拟弹丸(FSP)高速撞击不同结构三明治板实验, 获得FSP弹丸贯穿16种三明治板的弹道极限, 分析结构特征对纤维增强复合材料三明治板比吸收能的影响。结果表明, 叠层芳纶、玻纤基三明治板较单层结构三明治板比吸收能分别提高了8.31%和16.09%, 8 mm面板+8 mm夹层+6 mm背板芳纶、玻纤基三明治板较4 mm面板+8 mm夹层+10 mm背板的芳纶、玻纤基三明治板比吸收能分别提高了37.72%和25.35%; 芳纶、玻纤基三明治板的比吸收能均随复合材料夹层厚度的增加呈指数递增, 夹层基板的抗拉性能是影响三明治板比吸收能的重要因素; 同面密度下, 厚面板、薄背板及多层叠合夹层结构的三明治板具有更高的比吸收能。  相似文献   

15.
This paper reports an original inverse perforation tests on foam core sandwich panels under impact loading. The key point is the use of an instrumented Hopkinson pressure bar as a perforator and at the same time a measuring device. It aims at a high quality piercing force record during the whole perforation process, which is a weak point of common free-flying projectile-target testing schemes.  相似文献   

16.
Blast impact response of aluminum foam sandwich composites   总被引:1,自引:0,他引:1  
Military and civilian structures can be exposed to intentional or accidental blasts. Aluminum foam sandwich structures are being considered for energy absorption applications in blast resistant cargo containers, ordnance boxes, transformer box pads, etc. This study examines the modeling of aluminum foam sandwich composites subjected to blast loads using LS-DYNA software. The sandwich composite was designed using laminated face sheets (S2 glass/epoxy and aluminum foam core. The aluminum foam core was modeled using an anisotropic material model. The laminated face sheets were modeled using material models that implement the Tsai-Wu and Hashin failure theories. Ablast load was applied using the CONWEP blast equations (*LOAD_BLAST) in LS-DYNA. This paper discusses the blast response of constituent S2-glass/epoxy face sheets, the closed cell aluminum foam core as well as the sandwich composite plate.  相似文献   

17.
This paper describes the results of a combined experimental/numerical study to investigate the perforation resistance of sandwich structures. The impact response of plain foam samples and their associated sandwich panels was characterised by determining the energy required to perforate the panels. The dynamic response of the panels was predicted using the finite element analysis package ABAQUS/Explicit. The experimental arrangement, as well as the FE model were also used to investigate, for the first time, the effect of oblique loading on sandwich structures and also to study the impact response of sandwich panels on an aqueous support.  相似文献   

18.
During flight, aircrafts can be submitted to complex loadings. The reliability of their structure is an essential aspect in ensuring passenger safety. In the specific case of helicopters, blades are subjected to impact loading. The following work will focus on the experimental and numerical study of an oblique impact on the skin of the blade. It is equivalent in a first approach to an impact on a sandwich panel comprising a foam core and a thin woven composite skin. This study aims to identify the mechanisms of damage to the skin for different orientations of the firing axis, and to develop a representative model of the damage kinetics adapted to the modeling of the complete structure. Thus, an F.E. semi-continuous explicit model has been developed. It relies on the development of a specific damageable element at the woven mesh scale. Numerical results obtained are accurate, allowing the identification of the damage mechanism of the woven skin for different firing orientations.  相似文献   

19.
Sandwich panels constructed from metallic face sheets with the core composed of an energy absorbing material, have shown potential as an effective blast resistant structure. In the present study, air-blast tests are conducted on sandwich panels composed steel face sheets with unbonded aluminium foam (Alporas, Cymat) or hexagonal honeycomb cores. Honeycomb cores with small and large aspect ratios are investigated. For all core materials, tests are conducted using two different face sheet thicknesses. The results show that face sheet thickness has a significant effect on the performance of the panels relative to an equivalent monolithic plate. The Alporas and honeycomb cores are found to give higher relative performance with a thicker face sheet. Under the majority of the loading conditions investigated, the thick core honeycomb panels show the greatest increase in blast resistance of the core materials. The Cymat core panels do not show any significant increase in performance over monolithic plates.  相似文献   

20.
The effects of a gap between discontinuous WBK (Wire-woven Bulk Kagome) cores on the bending properties of mild steel sandwich panels were elaborated. Analytic solutions were derived, and the experimental and numerical results of the bending response of sandwich panels with continuous and discontinuous WBK cores were presented. The analytic solutions of sandwich panels with continuous or discontinuous WBK cores under bending load provided good estimations of the failure mode, peak load, and bending stiffness in comparison with the experimental results. The strength and stiffness of sandwich panels with discontinuous WBK cores under bending load often substantially deteriorated depending on the gap width between the cores and on the detailed geometry near the gap. The analytic solutions successfully explained how the deterioration of the bending strength or stiffness could be minimized, when two separate sandwich panels or cores are to be joined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号