首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An independent mesh method (IMM) for three-dimensional stress analysis in composites with complex fiber architectures is proposed. The method represents a combination of direct meshing and voxel-based methodology and allows the modeling of complex tow geometries not readily amenable to traditional finite element meshing. Each fiber tow is meshed independently, while the matrix is meshed throughout the volume of interest. The matrix approximation is then truncated by disregarding the shape functions, whose support is completely inside a tow or completely covered by more than one tow in regions such as tow intersections. The calculation of average stiffness properties of both an oblong fiber-matrix representative volume element (RVE) and a plain weave composite RVE is performed for verification and convergence evaluation purposes. The digital chain technique was used to model fiber architecture in the tri-axial braided composite with high fidelity including the effects of nesting and compaction of plies. Local deformations of the digital architecture due to relief of residual processing stress following a saw cut were predicted by using IMM. These deformations in the tri-axial braided composite were then measured experimentally using Moiré interferometry. The degree of agreement between the predicted strain fields and those measured experimentally was shown to correlate with the degree of accuracy of digital architecture and varied from agreement in average behavior to practically point wise agreement across the entire field of measurement.  相似文献   

2.
《Composites Part A》2003,34(6):511-515
Visualisation of complex 3D textile structures used to reinforce advanced composite materials can be extremely difficult. 3D models to assist in visualisation are recognised as being very helpful. In addition they can be used as the basis for parametric studies and finite element analysis, although the latter downstream use puts considerable demands upon the solid model.This paper describes a novel technique to automatically generate a parametric solid model of a woven textile reinforced composite material. The solid model is generated using a program file written in I-deas® Open Language. The input data, provided by the user, describes the cross-sectional shape of tows. The system uses this data to automatically generate a set of basic tow ‘parts’. It then proceeds to put these together in a fabric assembly with appropriate constraints assuring the correct relative positions of the interlacing yarns.This assembly model of the tows constitutes the representative volume element, RVE, of the fabric structure. To demonstrate the principle, the approach is applied to the modelling of a 2D plain weave structure.  相似文献   

3.
Micromechanical finite element modeling has been employed to define the failure behavior of S2 glass/BMI textile composite materials under impact loading. Dynamic explicit analysis of a representative volume element (RVE) has been performed to explore dynamic behavior and failure modes including strain rate effects, damage localization, and impedance mismatch effects. For accurate reflection of strain rate effects, differences between an applied nominal strain rate across a representative volume element (RVE) and the true realized local strain rates in regions of failure are investigated. To this end, contour plots of strain rate, as well as classical stress contours, are developed during progressive failure. Using a previously developed cohesive element failure model, interfacial failure between tow and matrix phases is considered, as well as classical failure modes such as fiber breakage and matrix microcracking. In-plane compressive and tensile loading have been investigated, including multi-axial loading cases. Highly refined meshes have been employed to ensure convergence and accuracy in such load cases which exhibit large stress gradients across the textile RVE. The effect of strain rate and phase interfacial strength have been included to develop macro-level material failure envelopes for a 2D plain weave and 3D orthogonal microgeometry.  相似文献   

4.
含缺陷平纹机织复合材料拉伸力学行为数值模拟   总被引:2,自引:1,他引:1  
基于平纹机织复合材料的细观结构单胞模型, 考虑其制备过程中产生的孔隙缺陷为随机分布的特征, 通过引入两参数Weibull分布函数, 应用Python语言实现了ABAQUS的二次开发, 并采用Linde等提出的失效准则, 建立了含孔隙缺陷平纹机织复合材料的渐进损伤模型, 利用有限元数值方法模拟了其拉伸应力-应变行为, 针对该模型, 讨论了孔隙缺陷对材料拉伸应力-应变行为的影响, 并阐述了该平纹机织复合材料单胞模型在经向拉伸载荷作用下其纤维束的损伤及演化过程。结果表明, 该模型给出的数值模拟结果与实验数据吻合较好, 证明了模型的有效性, 为该类材料的优化设计及其力学性能分析提供了一种有效方法。   相似文献   

5.
纤维织物增强复合材料微观应力场的有限元分析   总被引:4,自引:1,他引:3       下载免费PDF全文
应用有限元法对一种平面编织玻璃纤维复合材料层板在拉伸载荷下的微观应力场作了详细的计算分析。分析结果清晰揭示了微观应力场的概貌, 尤其是材料结构中的强度薄弱点。   相似文献   

6.
A meso-scale finite element model is developed to investigate effects of weave architecture on strain and stress evolution in an eight harness-satin SiC/SiCN composite. Fiber tows are modeled explicitly using elastic rebar layers embedded within elastic/plastic effective medium elements. Effects of through-thickness constraint are investigated using several idealized test geometries, ranging from a single (unconstrained) ply to a fully-constrained two-ply lay-up with periodic boundary conditions in the through-thickness direction. A parallel experimental study of surface strain evolution in a representative SiC/SiCN composite is used to assess the model predictions. The results indicate that, because of bending and straightening of wavy tow segments at the locations of tow cross-overs, strain and stress concentrations arise. The effects are exacerbated by reductions in the constraints on bending and straightening caused by matrix damage, especially in surface plies. The implications of the results in the fracture process and on potential mitigation strategies are discussed.  相似文献   

7.
《Composites Part B》2007,38(2):247-257
Failure of composite materials often results from damage accumulation in the individual constituents (fiber and matrix) of the composite. At times, damage may even be limited to a single constituent. The ability to accurately predict not only ultimate strength values but also intermediate constituent level failures is crucial to the success of introducing composite materials into demanding structural applications.In this paper, we develop two progressive failure models for the analysis of a plain weave composite material. The formulations are based on treating the weave as consisting of separate but linked continua representing the warp fiber bundles, fill fiber bundles, and pure matrix pockets. Retaining constituent identities allows one to access constituent (phase averaged) stress fields that are used in conjunction with both a stress based and damage based failure criterion to construct a nonlinear progressive failure algorithm for the woven fabric composite material. The MCT decomposition and the nonlinear progressive failure algorithm are incorporated within the framework of a traditional finite element analysis.The constituent based progressive failure algorithm combined with both the stress based and damage based failure criteria are compared against experimental data for a plain weave, woven fabric composite under various loading conditions. The analytical results from the damage based approach show a marked improvement over the stress based predictions and are in excellent agreement with the experimental data.  相似文献   

8.
平纹编织复合材料中纤维束波动效应会引起随动材料主方向变化及面外剪切应力集中,为了研究其对平纹编织复合材料力学性能及损伤行为的影响,提出改进的像素法细观有限元单胞模型。模型根据纤维束波动曲线定义了材料主方向的变化,采用Hashin准则模拟纤维束的损伤起始,并引入剪切修正因子考虑面外剪切应力对面内拉伸损伤的影响。模型可以预测平纹编织复合材料的面内拉伸强度和损伤演化过程,结果表明:纤维束材料主方向波动会引起平纹编织复合材料面内拉伸强度下降;面外剪切应力集中是导致复合材料最终失效的主要原因,且随着剪切修正因子增大,复合材料面内拉伸强度显著降低;纤维束材料主方向波动和面外剪切应力集中均对平纹编织复合材料的损伤行为和破坏机理产生了影响,需要在数值分析中对其进行准确描述。   相似文献   

9.
This paper presents the in-plane elastic properties of 2/2 twill weave, T300 carbon/epoxy, woven fabric composite plates, obtained by both finite element analysis and experiments. A micromechanical, three-dimensional (3D) finite element model of the single layer unit cell of a 2/2 twill weave fabric composite is built, and a homogenization process is implemented. A unit cell is chosen such that it encloses the characteristic periodic repeat pattern in the fabric weave. Detailed geometry together with construction procedures for this new model are developed by using ANSYS Parametric Design Language (APDL). In this respect, the scope for altering the weave and yarn parameters is facilitated. Standard tensile and rail shear tests with modifications are performed for this kind of woven fabric composite. Elastic mechanical properties determined by experiments are presented, and the finite element model is verified. Satisfactory correlation between the predicted and experimental results are obtained.  相似文献   

10.
A significant challenge in the numerical modelling of composite structures with a multi-axis fibre architecture is the reproducibility of the textile mechanics [1]. A numerical analysis procedure for woven composite structures using a multi-scale finite element approach has been developed, and is presented in this paper. The approach is demonstrated for a flat two-dimensional woven glass/epoxy laminate. Digital microscopy is used to estimate tow cross-section and path, and quantify the amount of variation of these parameters. This data is used to generate both a meso-scale model of a single unit cell as well as a macro-scale model of the complete structure. Numerical results from the proposed approach are compared to experimental stress-strain data, which show good agreement in the lower strain range.  相似文献   

11.
《Composites Part A》2007,38(3):1019-1037
A high fidelity assessment of accumulative damage of woven fabric composite structures subjected to aggressive loadings is strongly reliant on the accurate characterization of the inherent multiscale microstructures and the underlying deformation phenomena. The stress and strain fields predicted at a global structural level are unable to determine the damage and failure mechanisms at the constituent level and the resulting stiffness degradation. To establish a mapping relation between the global and constituent response parameters, a new four-cell micromechanics model is developed for an unbalanced weave subjected to a thermal–mechanical loading. The developed four-cell micromechanics model not only bridges the material response from one length scale to another but also quantifies the composite thermal–mechanical properties at a given state of constituent damage. The thermal–mechanical mapping relations at different microstructural levels are derived based on the multicell homogenization, intercell compatibility conditions, and energy methods. Because of the high computational efficiency of the developed thermal–mechanical micromechanics model, it can be linked with a finite-element-based dynamic progressive failure model, where the response parameters at different microstructural levels can be extracted for each Gaussian point and at each time step. The accuracy and the dual function of the developed micromechanics model are demonstrated with its application to a balanced plain weave, an unbalanced plain weave, and failure mode simulation of a tensile coupon test.  相似文献   

12.
《材料科学技术学报》2019,35(12):2869-2882
An algorithm which allows the generation of representative volume elements (RVEs) for complex woven and warp-interlaced fiber-reinforced composite topologies while avoiding unphysical tow intersections is presented. This is achieved by extending an existing RVE generation strategy in two significant ways: (1) the local cross section shape of the tow is adjusted depending on the local tow curvature in a way that preserves the cross sectional area of the tow, and (2) the elementary crimp interval is separated into a planar and a transition region. The modifications facilitate the generation of a wide range of elaborate textile topologies without tow intersections, which are present without the proposed modifications unless complex tow to tow contact models are introduced. The mechanical properties of plain weaves were predicted based on the topology generated with the proposed algorithm as well as based on RVEs which were constructed based on actual micrographs, i.e. a “digital twin” of the actual microstructure. A comparison of the predicted mechanical properties based on finite element and Multiscale Generalized Method of Cells techniques shows close agreement. However, some differences exist with respect to experimentally determined material parameters due to the finite dimensions of the specimens. Lastly, mechanical properties of multilayered weaves are predicted with the finite element method. The considered material systems are carbon fiber in epoxy matrix as well as C/C-SiC. However, the procedure is applicable to a wide range of material systems.  相似文献   

13.
Carbon-carbon woven composites were analyzed using three-dimensional finite-element analysis to predict the state of the composite after processing. Two types of weaves were examined: plain weave and eight-harness satin weave. Periodic boundary conditions for analyzing eight-harness satin weaves are derived herein. The effect of the stacking sequence of these weaves was investigated. Temperature-dependent material properties and a nonlinear damage model were used in the analysis procedure. Results indicate that there is a significant difference in the as-processed damage states and moduli of these composites for different stacking sequences. Damage initiated as transverse matrix cracks for all weave configurations. This lead to significant damage to the matrix pockets and, in some cases, to tow debonding and shear failure within the tows. In no case was fiber damage predicted.  相似文献   

14.
主要研究了随机孔隙缺陷在C/C-SiC缎纹编织复合材料中的有限元建模方法及其对拉伸性能的影响。基于C/C-SiC缎纹编织复合材料的细观结构和实验观察所得的微观形貌,得出孔隙缺陷具有随机分布特征,提出了一种三维随机碰撞算法模拟孔隙在复合材料中的分布,建立了含随机孔隙缺陷的C/C-SiC缎纹编织复合材料的有限元模型。采用有限元软件ABAQUS模拟了其在拉伸载荷下的力学行为,讨论了孔隙缺陷的尺寸和分布形式对材料拉伸性能的影响,并对试样进行了单轴拉伸实验测试,验证了数值模拟的有效性。结果表明,用本文方法建立的有限元模型符合含孔隙缺陷C/C-SiC缎纹编织复合材料的真实细观结构,相应的数值模拟结果也与试验数据吻合较好。本文的研究结果为含孔隙缺陷的缎纹编织复合材料及具有相似结构特征的复合材料的力学分析与优化设计提供了一种有效的方法。   相似文献   

15.
《Composites》1995,26(2):134-140
In this paper the reasons for choosing woven fabric reinforcements for composite components are given and the alternatives to woven structures are examined. The philosophy behind the development of the computer-generated model of a woven composite fabric reinforcement is discussed. The model described here is a general one, capable of producing a 3-D representation of any single layer fabric, and has been designed to facilitate manufacture of the weave and also finite element analysis of the finished composite component, as well as providing a very useful visualization of the weave. The model has the potential to be developed along a number of fronts, including improved visualization and extension to 3-D weaves.  相似文献   

16.
平面编织复合材料层板弹性性能的预测   总被引:2,自引:0,他引:2       下载免费PDF全文
本文在平面编织纤维增强树脂复合材料的单方向直波纹模型的基础上,分别采用经典层合板理论和有限元应变能等效方法,预测了平面编织复合材料层合板迭层对其弹性性能的影响。根据经典层合板理论,由对平面织物复合材料的单向直纹模型的上、下表面施加不同的约束条件,得出层板弹性常数变化范围。用有限元能量法,则预测出不同铺层数的编织复合材料层板的弹性性能。与实验结果比较,表明纵向模量的预测是可靠的。  相似文献   

17.
This paper considers the analysis of composite structures, simultaneously loaded by mechanical and thermal loads, as often found in aerospace applications. Typically a thermal analysis providing the temperature field must precede the stress analysis, which has to account for thermal as well as for additional mechanical loads. Presently, thermal analyses are mostly carried out by finite difference methods or by 3D finite elements, whereas the stress analysis is usually performed by the use of shell elements. Thus, the temperature field has to be transferred from a finite difference or 3D finite element model to a shell finite element model. This process often requires lots of manual user interaction and can get very time consuming. The paper suggests an integrated analysis process which uses a shell finite element model throughout. Thermal lamination theories and related finite elements developed by the first author are used for the 3D thermal analysis. This leads to a reduction of the computing time by two orders of magnitude as compared to 3D finite elements whereas the accuracy of the results is nearly unaffected. The stress analysis is carried out using the same geometry model but with different mesh density. Interpolation between the different meshes can be accomplished automatically since both discretizations are defined on the same geometry. Standard shell elements based on the First order shear deformation theory (FSDT) provide the three in-plane stress components. A novel postprocessing scheme is adopted for determining all transverse stress components from the in-plane stresses and the temperature field. The postprocessing methodology is based on the extended 2D-method which utilizes the material law for transverse shear and the 3D equilibrium conditions. It is computationally very efficient and can be applied in conjunction with any standard finite element package. The interaction of thermal and stress analysis is demonstrated by the example of a composite wing box for a future large airliner.  相似文献   

18.
编织碳纤维增强树脂复合材料(CFRP)的电阻抗分布具有各向异性、异质性、几何结构复杂等特点。建立电阻抗分布模型是利用电磁涡流无损检测技术获取编织CFRP缺陷及疲劳损伤信息的关键关节。基于电阻抗张量建模理论,采用多层编织结构CFRP二维平面的分块均化电学特性表征方法,建立编织结构CFRP的简化电阻抗分布模型,从而实现编织结构CFRP电磁特性的精确、快速有限元分析。在有限元仿真基础上,通过设计双空气旋转线圈电磁传感器对平纹编织CFRP进行电磁无损检测,选用阻抗的极坐标图描述被测材料沿不同方向的阻抗变化趋势,通过实验验证有限元建模的正确性。最后利用所提出的建模方法模拟了双空气旋转线圈传感器对平纹编织CFRP的结构缺陷及循环载荷疲劳的检测效果。   相似文献   

19.
S. Naboulsi  S. Mall   《Composite Structures》1998,41(3-4):303-313
Analyses of adhesively bonded composite patches to repair cracked structures have been the focus of many studies. Most of these studies investigated the damage tolerance of the repaired structure by using linear analysis. This study involves nonlinear analysis of the adhesively bonded composite patch to investigate its effects on the damage tolerance of the repaired structure. The nonlinear analysis utilizes the three-layer technique which includes geometric nonlinearity to account for large displacements of the repaired structure and also material nonlinearity of the adhesive. The three-layer technique uses two-dimensional finite element analysis with Mindlin plate elements to model the cracked plate, adhesive and composite patch. The effects of geometric nonlinearity on the damage tolerance of the cracked plate is investigated by computing the stress intensity factor and fatigue growth rate of the crack in the plate. The adhesive is modeled as a nonlinear material to characterize debond behavior. The elastic-plastic analysis of the adhesive utilizes the extended Drucker-Prager model. A detailed discussion on the effects of nonlinear analysis for a bonded composite patch repair of a cracked aluminum panel is presented in this paper.  相似文献   

20.
In this paper, two models are presented for plain weave composites. One is finite element analysis (FEA) model for elastic constants, namely, sinusoidal yarn model. Another is analytical model for failure strengths, namely, sinusoidal beam model. The FEA model is generated by interfacing an in-house computer code with FEA software strand6, and the analytical model is developed using the theory of elasticity. Numerical studies are carried out using the present models to investigate the effects of some major geometrical parameters on the properties of plain weave composites. It is concluded that the failure strengths are closely related to the fiber volume fraction of a yarn, and the mechanical properties are closely related to the overall fiber volume fraction of the composites. An experimental testing program is conducted for T300/934 plain weave composites to validate the developed models. A good agreement exists between the predicted and measured results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号