首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we investigated the fatigue crack growth behavior of cracked aluminum plate repaired with bonded composite patch especially in thick plate. Adhesively bonded composite patch repair technique has been successfully applied to military aircraft repair and expanded its application to commercial aircraft industry recently. Also this technique has been expanded its application to the repair of load bearing primary structure from secondary structure repair. Therefore, a through understanding of crack growth behavior of thick panel repaired with bonded composite patch is needed. We investigated the fatigue crack growth behavior of thick panel repaired with bonded composite patch using the stress intensity factor range (ΔK) and fatigue crack growth rate (da/dN). The stress intensity factor of patched crack was determined from experimental result by comparing the crack growth behavior of specimens with and without repair. Also, by considering the three-dimensional (3D) stress state of patch crack, 3D finite element analyses were performed to obtain the stress intensity factor of crack repaired by bonded composite patch. Two types of crack front modeling, i.e. uniform crack front model and skew crack front model, were used. The stress intensity factor calculated using FEM was compared with the experimentally determined values.  相似文献   

2.
The biaxiality effect, especially the effect of non-singular stress cycling, on the fatigue behavior was studied, employing cruciform specimens of aluminum alloys 1100-H14 and 7075-T651. The specimens, containing a transverse or a 45o inclined center notch, were subjected to in-phase (IP) or 100% out-of-phase (hereinafter referred to as “out-of-phase or OP”) loading of stress ratio 0.1 in air. The biaxiality ratio λ ranged from 0 to 1.5, and 3 levels of stress were applied. It was observed that: (1) at a given λ, a lower longitudinal stress induced a longer fatigue life under IP and OP loading, and the fatigue life was longer under IP loading, (2) the fatigue crack path profile was influenced by λ, phase angle (0o or 180o), and initial center notch (transverse or 45o inclined); (3) the fatigue crack path profiles, predicted analytically and determined experimentally, had similar features for the specimens with a transverse center notch under IP loading; and (4) the fatigue crack growth rate was lower and the fatigue life longer for a greater λ under IP loading, whereas it changed little with change in λ under OP loading. These results demonstrate that non-singular stress cycling affects the biaxial fatigue behavior of aluminum alloys 1100-H14 and 7065-T651under IP and OP loading.  相似文献   

3.
In the present investigation it is shown that the effective fatigue threshold is uniquely correlated to the Young's modulus for a wide range of metallic and composite materials (ΔKth,eff=1.64·10−2·E). It is also demonstrated that the crack closure level Kcl increases with increased roughness of the fracture surface . Kcl and are quantitatively related via the equation for steels with widely different mechanical properties and grain sizes (120 MPa<Rp<1100 MPa, 1 μm<λ<100 μm). This relation can be extended to materials other than steels (e.g. aluminium and WC-Co alloys) by normalising against Young's modulus. The roughness value represents the standard deviation of height of the fracture surface and is shown to be simply related to the length and angle distributions of the linear length elements constituting the fracture profile.  相似文献   

4.
The concept of fracture for material elements at front of a crack for fatigue crack propagation was extended to the fatigue crack propagation of a cracked metallic member reinforced with a composite patch in this paper. From static mechanics and linear elastic fracture mechanics, force transfer on a cracked member through a composite patch was analyzed and a formula connecting the stress intensity factor with crack length was obtained. Thereafter, a fracture model for fatigue crack propagation of a repaired cracked metallic member was proposed. A new expression for the fatigue crack propagation rate has thus been derived. The expression was verified objectively by the test data. It is in good agreement with the test results.  相似文献   

5.
In this study, we investigate the experimental fatigue crack-growth behaviour of centrally cracked aluminium panels in mode-I condition which have been repaired with single-side composite patches. It shows that the crack growths non-uniformly from its initial location through the thickness of the single-side repaired panels. The propagated crack-front shapes are preformed for various repaired panels with different patch thicknesses. It is shown that there are considerable differences between the crack-front shapes obtained for thin repaired panels with various patch thicknesses. However, the crack-front shapes of thick repaired panels are not significantly changed with various patch thicknesses. Furthermore, effects of patch thickness on the crack growth life of the repaired panels are investigated for two typical thin and thick panel thicknesses. It shows that the crack growth life of thin panels may increase up to 236% using a 16 layers patch. However, for thick panels, the life may extended about 21–35% using a 4 layers patch, and implementing 8 and 16 layers patches has not a significant effect on the life extension with respect to the 4 layers patch life.  相似文献   

6.
Three dimensional finite element analyses of the single-side repaired panels using glass/epoxy composite are performed considering the general mixed mode conditions and real crack-front shape modeling (RCFM) during the crack propagation procedure. Variations of the fracture parameters through the thickness of the panels for the initial crack configuration and crack growth behavior of the repaired panels with various patch lay-ups are investigated. The effect of considering K III on the small and large crack growth of repaired panels are also studied. The obtained lives are compared with the previously obtained lives using simplified FEM procedure and experimental results by the authors.  相似文献   

7.
In this paper, the problem of interfacial stresses in steel beams strengthened with bonded hygrothermal aged composite laminates is analyzed using linear elastic theory. The analysis is based on the deformation compatibility approach developed by Tounsi (Int. J. Solids Struct. 43:4154–4174, 2006) where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. The adopted model takes into account the adherend shear deformations by assuming a linear shear stress through the depth of the steel beam. This solution is intended for application to beams made of all kinds of materials bonded with a thin composite plate. For steel I-beam section, a geometrical coefficient ξ is determined to show the effect of the adherend shear deformations. This research is helpful for the understanding on mechanical behaviour of the interface and design of such structures.  相似文献   

8.
《Composites Part B》2013,45(1):266-273
The present study investigated the salt fog effect on the quasi-static tensile and fatigue properties of the center-cracked aluminum plates which were single-sidedly repaired with Cf/epoxy composite patches. The results show that the salt fog has minimal impact on the quasi-static tensile properties of the epoxy resin and Cf/epoxy composites; while the quasi-static tensile and fatigue properties of the repaired and unrepaired specimens all decrease with the exposure time of the salt fog increasing. Compared to the unrepaired specimens, the repaired specimens have high resistance to salt fog degradation. Within the 0–900 h range of exposure time, the repaired specimens completely fail when the fatigue crack length is equal to the width of the aluminum plate. However, as the exposure time is larger than 900 h, the repaired specimens can still bear fatigue loading when the fatigue crack propagates through the aluminum plate.  相似文献   

9.
Fatigue and fracture paths in cold drawn pearlitic steel   总被引:1,自引:0,他引:1  
This paper analyses the influence of microstructural anisotropy of a progressively drawn pearlitic steel (orientation of pearlitic lamellae in the drawing direction) on the microscopic and macroscopic evolution of cracking paths produced by fatigue and fracture. The fatigue crack path is always contained in the transverse section of the wires, i.e., the subcritical propagation develops under a global mode I, so that the main crack path is associated with mode I and some very local deflections take place to produce a roughness in the fatigue crack path depending on the drawing level. The fracture crack path evolves from a global mode I propagation following the transverse plane in slightly drawn steels (including the hot rolled bar that is not cold drawn at all) to a global mixed-mode propagation associated with crack deflection in intermediate and heavily drawn steels (the latter with a strong mode II component), the deviation angle being an increasing function of the drawing degree in the steel.  相似文献   

10.
Fatigue cracking behavior from a notch was investigated at room temperature for Ti-6.5Al-3.5Mo-1.5Zr-0.3Si(TC11) alloys with four different microstructures obtained at different cooling rates from the β transus temperature.It was found that the alloy with lamellar structures consisting of α/β lamellae or acicular α’ martensite laths had a higher fatigue crack initiation threshold from the notch,while the bimodal structure with coarse α grain had a lower fatigue cracking resistance.The alloy with α/β lamellar structure showed a higher fatigue crack growth resistance.The length scales of the microstructures were characterized to correlate with fatigue cracking behavior.Fatigue cracking mechanism related to microstructures was discussed.  相似文献   

11.
As is well-known, strength of materials is influenced by the specimen or structure size. In particular, several experimental campaigns have shown a decrease of the material strength under static or fatigue loading with increasing structure size, and some theoretical arguments have been proposed to interpret such a phenomenon. As far as fatigue crack growth is concerned, limited information on size effect is available in the literature, particularly for so-called quasi-brittle materials like concrete. In the present paper, by exploiting concepts of fractal geometry, some definitions of fracture energy and stress intensity factor based on physical dimensions different from the classical ones are discussed. A multifractal size-dependent fatigue crack growth law (expressing crack growth rate against stress intensity factor range) is proposed and used to interpret relevant experimental data related to concrete.  相似文献   

12.
The effect of welding residual stresses on fatigue crack growth in rail welds is studied. Finite element analysis is used to calculate residual stresses in a flash-butt welded rail. The calculated residual stresses are found to be in good agreement with experimentally determined residual stresses in a welded rail. The redistribution of residual stresses in the welded rail is simulated for a straight track, during heavy-haul operation conditions, using a train-track model. Fatigue crack growth of defects in the weld region is studied using fracture mechanics. In the investigation, a number of parameters such as the axle load, crack location, crack size and rail temperature are varied.  相似文献   

13.
The influence of the 3D frictional crack surface interaction on the fracture mechanical parameters as well as on the crack path is numerically investigated. For the solution of the boundary value problem the 3D dual boundary element method in terms of the discontinuous formulation is utilized. This method is especially suited for contact problems because it directly deals with the discontinuities at the crack surfaces. The contact problem is solved by the application of the penalty method. Coulomb’s frictional law is utilized for the consideration of the dissipative nature of friction. For discrete steps within one load cycle the stress intensity factors are determined by an extrapolation procedure from the stress field. Based on the analysis of a load cycle, the cyclic stress intensity factors are obtained. For the simulation of crack propagation an implicit time integration scheme of a crack propagation law implemented in terms of a predictor-corrector scheme is applied. The influence of the crack surface roughness on the crack path is shown by numerical examples.  相似文献   

14.
The fatigue crack growth behavior of an austenitic metastable stainless steel AISI 301LN in the Paris region is investigated in this work. The fatigue crack growth rate curves are evaluated in terms of different parameters such as the range of stress intensity factor ΔK, the effective stress intensity factor ΔKeff, and the two driving force parameter proposed by Kujawski K1.The finite element method is used to calculate the stress intensity factor of the specimens used in this investigation. The new stress intensity factor solution has been proved to be an alternative to explain contradictory results found in the literature.Fatigue crack propagation tests have been carried out on thin sheets with two different microstructural conditions and different load ratios. The influence of microstructural and mechanical variables has been analyzed using different mechanisms proposed in the literature. The influence of the compressive residual stress induced by the martensitic transformation is determined by using a model based on the proposal of McMeeking et al. The analyses demonstrate the necessity of including Kmax as a true driving force for the fatigue crack growth. A combined parameter is proposed to explain the effects of different variables on the fatigue crack growth rate curves. It is found that along with residual stresses, the microcracks and microvoids are other factor affecting the fatigue crack growth rate in the steel studied.  相似文献   

15.
Fatigue crack propagation experiments under both force and displacement control have been performed on the wrought superalloy Haynes 230 at room temperature, using a single edge notched specimen. The force controlled tests are nominally elastic, and the displacement controlled tests have nominally large plastic hysteresis at the beginning of the tests, but saturates towards linear elastic conditions as the crack grows. As some tests are in the large scale yielding regime, a non-linear fracture mechanics approach is used to correlate crack growth rates versus the fracture parameter ΔJ. It is shown that crack closure must be accounted for, to correctly model the crack growth seen in all the tests in a unified manner. For the force controlled small scale yielding tests the Newman crack closure model was used. The Newman equation is however not valid for large nominal cyclic plasticity, instead the crack closure in the displacement controlled tests is extracted from the test data. A good agreement between all tests is shown, when closure is accounted for and effective values of ΔJ are used.  相似文献   

16.
Due to their massively parallel structure and ability to learn by example, artificial neural networks can deal with nonlinear problems for which an accurate analytical solution is difficult to obtain. These networks have been used in modeling the mechanical behavior of fiber-reinforced composite materials. Although promising results were obtained using such networks, more investigation on the appropriate choice of their structure and their performance in the presence of limited and noisy data is needed. On the other hand, polynomials networks have been known to have excellent properties as classifiers and are universal approximators to the optimal Bayes classifier. Not being dependant on various user defined parameters, having less computational requirements makes their use over other methods, such as neural networks, an advantage.

In this work, the fatigue behavior of unidirectional glass fiber/epoxy composite laminae under tension–tension and tension–compression loading is predicted using feedforward and recurrent neural networks. These predictions are compared to those obtained using polynomial classifiers. Experimental data obtained for fiber orientation angles of 0°, 19°, 45°, 71° and 90° under stress ratios of 0.5, 0 and –1 is used.

It is shown that, even when a small number of experimental data points is used to train both polynomial classifiers and neural networks, the predictions obtained are comparable to other current fatigue life-prediction methods. Also, polynomial classifiers are shown to provide accurate modeling between the input parameters (maximum stress, R-ratio, fiber orientation angle) and the number of cycles to failure when compared to neural networks.  相似文献   


17.
Residual strength degradation in graphite/epoxy composite laminates is evaluated and a model proposed relating the residual strength to the applied fatigue cycles and the maximum applied stress. Based on this model, the statistical distribution of the residual strength is derived and compared with available experimental data. Good agreement is observed between the proposed model and experimental results.  相似文献   

18.
The problem of brittle crack propagation and fatigue crack growth in functionally graded materials (FGMs) is addressed. The proposed analytical approach can be used to estimate the variation of the stress-intensity factor as a function of the crack length in FGMs. Furthermore, according to the Paris’ law, the fatigue life and the crack-tip velocity of crack propagation can be predicted in the case of fatigue crack growth. A comparison with numerical results obtained according to the Finite Element method will show the effectiveness of the proposed approach. Detailed examples are provided in the case of three-point bending beam problems with either a FGM interlayer, or a FGM external coating. A comparison is presented between two types of grading in the elastic modulus: a continuous linear variation in the FGM layer and a discrete approximation with a multi-layered beam and a constant Young’s modulus in each layer.  相似文献   

19.
In this study, experimental and numerical investigations were carried out in order to compare the performances of composite and metallic patches for repairing aircraft structures. In the experimental part, an accelerating aging of the composite was realized by the immersion of the composite patch in distilled water. The fatigue lives of notched plates repaired with aged composite patch, non-aged composite patch and aluminum patch were measured. The obtained results show that the composite patch is more beneficial than the aluminum patch if there is no significant water absorption by the composite. In the numerical part, the stress intensity factor at the crack tip was computed for aged and non-aged composite patches and for aluminum patches. The numerical results confirm the experimental ones, the reduction of the stress intensity factor by the composite patch is more significant than the aluminum patch but the water absorption reduces significantly the repair efficiency.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号