首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
在搅拌转速600 r/min、CO_2流量245 mL/min、Ca~(2+)初始浓度0.24 mol/L的条件下研究296.15~323.15 K时CO_2(g)-NH_3(aq)-Ca~(2+)(aq)气液反应体系中碳酸钙结晶反应动力学模型。结果表明:当温度313.15 K时,反应体系中水合氨解离及CO_2吸收化学反应达到或接近平衡,依据反应动力学模型,拟合得到296.15、303.15 K下CO_2(g)-NH_3(aq)-Ca~(2+)(aq)气液两相结晶反应的反应速率常数在数值上分别为1.377、4.894,反应级数为2.769;当温度≥313.15 K时,反应体系中水合氨解离及CO_2吸收化学反应未能达到或接近平衡,依据简化的反应动力学模型,拟合得到313.15、323.15K下CO_2(g)-NH_3(aq)-Ca~(2+)(aq)气液两相结晶反应的反应速率常数在数值上分别为0.100、0.159,反应级数为1.097。研究结果对CO_2(g)-NH_3(aq)-Ca~(2+)(aq)气液两相结晶反应动力学模型受温度的影响提供了动力学参数,对工业设计具有一定指导意义。  相似文献   

2.
环丙沙星-磷钼多金属氧酸盐的制备及热分解动力学   总被引:6,自引:1,他引:5       下载免费PDF全文
报道了环丙沙星与十二磷钼酸的多金属氧酸盐化合物,用元素分析、IR、TG-DTA等方法对其进行了表征,结果显示该化合物仍保持Keggin型结构特征。同时,采用TG-DTG技术研究了标题化合物在氮气气氛中的热分解机理及非等温动力学,它的热分解过程经历了3个阶段,其中间体和残余物运用TG-DTG、IR和XRD 技术进行了确证。采用Achar方程、Coats-Redfern方程、Kissinger方程、Flynn-Wall-Ozawa方程和Starink方程对非等温动力学数据进行了分析,得到了第3步热分解反应的机理函数、动力学参数和热分解反应动力学方程,其热分解反应过程受F3(化学反应)机理控制, 表观活化能为351 kJ·mol-1,指前因子为2.57×10 30s-1。  相似文献   

3.
基于Krichevsky–Kasarnovsky(K-K)方程,首先通过将实验测得的溶解度数据与K-K方程相关联,得到不同温度下CO_2的亨利常数和无限稀释偏摩尔体积,然后运用改进的K-K(MKK)方程计算了温度为293.15~333.15 K及压力为0~5.0 MPa内CO_2在离子液体[emim][FAP]、[bmim][FAP]和[hmim][FAP]中的溶解度。结果表明:降低温度和升高压力都有助于提高CO_2的溶解度;同族离子液体阳离子的烷基链长度越长,CO_2的溶解度越大;当压力为5 MPa及温度为293.15 K时,CO_2在离子液体[hmim][FAP]中的溶解度值达到最大值为0.764 1;在相同条件下,CO_2在以上3种离子液体中的亨利常数与CO_2的溶解度大小次序相反,表明亨利常数越小,溶解度越大。由MKK方程计算得到的CO_2在3种离子液体中的溶解度值与实验值之间的总相对偏差绝对平均值分别为1.55%、2.09%和2.73%,表明MKK方程能以较好的精度预测CO_2在所研究离子液体中的溶解度。  相似文献   

4.
石膏矿化二氧化碳两步法的本质是CO_2被氨吸收后形成的(NH_4)_2CO_3与石膏主要成分CaSO_4·2H_2O间的固液反应。对该反应过程进行研究,探索其反应机理和反应动力学方程。当搅拌转速500 rpm,温度区间25~45℃,其反应动力学可由收缩未反应芯模型描述,且为化学反应控制。其动力学方程符合拟一级假设,在实验温度25、30、35、40和45℃时,求得反应速率常数分别为1.20×10~(-4)、1.72×10~(-4)、2.47×10~(-4)、3.26×10~(-4)和4.28×10~(-4)s~(-1)。进一步回归得相应温区内反应速率常数k与温度T的关系:k=76879.92×exp(-50.21×10~3R~(-1)T~(-1))。  相似文献   

5.
基于等体积饱和法搭建了气体在液体中溶解度与体积传质系数的实验测量系统,该实验系统温度、压力、溶解度、体积传质系数的扩展不确定度分别为0.02 K、0.01%、2%、4%。利用该实验系统测量了温度为323~343K、压力为0.9~5.0 MPa范围内CO_2在正戊醇中的溶解度和体积传质系数。CO_2在正戊醇中的摩尔分数随着压力的升高而升高,在温度为323 K时,压力从2.5 MPa升高到3.2 MPa,溶解度升高26%。CO_2在正戊醇中的摩尔分数随着温度的升高而减小,在压力为0.9 MPa时,温度从323 K升高为343 K,溶解度降低26%。升高温度和压力都有利于提高体积传质系数,当温度和初始压力分别由323 K、1.1 MPa升高至343 K、5.0 MPa时,CO_2在正戊醇中的体积传质系数由0.0089 s~(-1)升高至0.0175 s~(-1)。  相似文献   

6.
利用水解-缩合法,以苯基三甲氧基硅烷、乙烯基单封头为原料制得乙烯基苯基倍半硅氧烷。采用1H NMR、FTIR分析了倍半硅氧烷的结构。以热失重分析(TGA)为手段,研究了乙烯基苯基倍半硅氧烷在氮气气氛中的热分解动力学;利用Kissinger方程、Flynn-Wall-Ozawa方程对乙烯基苯基倍半硅氧烷进行了热分解动力学研究,得到了乙烯基苯基倍半硅氧烷的热分解活化能E和指前因子A;将15种热分解机理函数分别代入4种动力学方程中研究了该乙烯基苯基倍半硅氧烷的热分解机理。研究表明:制得的乙烯基苯基倍半硅氧烷中乙烯基质量分数为2.01%,乙烯基苯基倍半硅氧烷在氮气气氛中热分解活化能E=237.62 k J/mol,指前因子A=2.90×1014s-1,最概然热分解机理为f(α)=1/4(1-α)[-ln(1-α)]-3,热分解动力学方程为:dα/dt=7.25×1013(1-α)[-ln(1-α)]-3exp(-2.85×104/T)。  相似文献   

7.
以氨基硅氧烷、烷基硅氧烷和石墨烯氧化物(GO)为原料,经溶胶-凝胶-冷冻干燥法一锅法制备了一种新型氧化石墨烯/氨基硅氧烷复合气凝胶——本征氨化硅基复合气凝胶;利用红外光谱(IR)、扫描电镜(SEM)、比表面积分析(BET)、热重分析(TG)、CO_2吸附量测试(Quantity Adsorbed of CO_2)对所得气凝胶进行了结构表征确证及性能测试。所得复合气凝胶具有双互穿网络结构,含GO氨化硅基气凝胶样品热分解温度在470℃,无GO氨化硅基气凝胶样品热分解温度为360℃。两者均有较高的热稳定性。在273 K,相对压力为0.033时,无GO氨化硅基气凝胶样品CO_2吸附量为11.60 mg·g~(-1),含GO氨化硅基气凝胶样品CO_2吸附量为11.92 mg·g~(-1)。  相似文献   

8.
利用C500量热仪研究了3,3′-二硝氨基-4,4′-氧化偶氮呋咱羟胺盐(HNAF)的热分解特性,根据Kissinger和Ozawa方程计算了热分解的动力学参数,同时计算了热分解的热力学参数;采用Micro-DSCⅢ量热仪测定了3,3′-二硝氨基-4,4′-氧化偶氮呋咱羟胺盐的比热容,计算获得了3,3′-二硝氨基-4,4′-氧化偶氮呋咱羟胺盐热安全评价参数。结果表明,HNAF的活化能(E)和指前因子(A)分别为205.26kJ/mol和1020.32s~(-1);活化熵、活化焓和活化吉布斯自由能分别为140.76J/(mol·K)、201.56kJ/mol和200.39kJ/mol。比热容方程与298.15K时的摩尔比热容分别为C_p=-1.560+0.016T-2.263×10~(-5)T~2(J/(g·K))和446.028J/(mol·K)。自加速分解温度、绝热分解温升、热爆炸临界温度分别为444.44K、2382.89K、 452.86K,绝热至爆时间为12.46~12.54s。  相似文献   

9.
通过共沉淀法制备了纳米锆酸铅(PbZrO_3),采用X射线衍射(XRD)、扫描电镜(SEM)和透射电子显微镜(TEM)对其结构进行了表征;采用差示扫描量热法(DSC)研究了PbZrO_3对AP、RDX和HMX热分解的催化性能;研究了含纳米PbZrO_3的NG/NC双基推进剂(PbZrO_3-DB)的热行为和非等温分解动力学。结果表明,PbZrO_3呈现典型的钙钛矿结构;纳米PbZrO_3能显著降低AP、RDX和HMX的热分解温度和表观活化能(分别降低了21、7.4和15kJ/mol);PbZrO_3-DB推进剂的热分解为非均相反应;PbZrO_3-DB推进剂的热分解机理为相边界反应的收缩圆柱体,动力学方程为dα/dt=1016.7/β2(1-α)1/2exp(-1.696×105/RT);用纳米PbZrOdt3作为NG/NC双基推进剂β的燃烧催化剂显著提高了其燃速,并降低了压强指数(在2~14MPa下为0.37~0.39);纳米PbZrO_3的催化燃烧性能显著优于PbO。  相似文献   

10.
在线性升温速率2.0、5.0、10.0和20.0K/min的条件下,采用热重-差热分析法(TG-DTA)测试5,5′-联四唑-1,1′-二氧二羟胺(TKX-50)的热分解行为,用Dzawa法和Kissinger法研究了其热分解动力学参数。结果表明,TKX-50的热分解过程可分为两个阶段,第一分解阶段活化能为147.05kJ/mol,指前因子为1012.91s-1,受二维扩散机理控制,反应机理服从n=1/2的Jander方程,热分解反应的动力学方程可表示为:dα/dT=1012.91/β×4(1-α)1/2[1-(1-α)1/2]1/2e14705/RT。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号