首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Soft-UV-NIL as replication technique was used to replicate sub-100 nm structures. The aim of this work is the stamp production and the replication of structures with dimensions smaller than 100 nm in a simple manner. Composite stamps composed of two layers, a thin hard PDMS layer supported by a thick soft PDMS (s-PDMS) layer are compared to common s-PDMS stamps regarding the resolution by using a Siemens star (star burst pattern) as test structure. The master is fabricated by electron beam lithography in a 140 nm thick PMMA resist layer. The stamp is molded directly from the structured resist, without any additional anti sticking treatment. Therefore the resist thickness determines the aspect ratio, which is 1.5 at the resolution limit. The replication is done in a UV-curing cycloaliphatic epoxy material. The employed test structure provides good comparability, the resolution limit at a glance, and it integrates a smooth transition from micro- to nanostructures. Therefore it is a capable structure to characterize the UV-NIL.  相似文献   

2.
When the spacing between the slider and the disk is less than 5 nm, the intermolecular forces between the two solid surfaces can no longer be assumed to be zero. The model proposed by Wu and Bogy (ASME J Trib 124:562–567, 2002) can be view as a flat slider–disk intermolecular force model. The contact distance between the slider and disk needs to be considered in this model when the slider-disk spacing is in the contact regime. To get more accurate intermolecular force effects on the head disk interface, the slider and disk surface roughness need to be considered, when the flying height is comparable to the surface RMS roughness value or when contact occurs. With the intermolecular force model and asperity model implemented in the CML air bearing program, the effect of intermolecular adhesion stress on the slider at low flying height is analyzed in the static flying simulation. It is found that the intermolecular adhesion stress between the slider and the disk has slight effect on the slider-disk interface for a flying slider.  相似文献   

3.
The challenging fabrication of sub-100-nm structures with high aspect ratio by UV-nanoimprint lithography (NIL) is addressed in this work. Thermal shrinkage is induced by cooling the structures below room temperature to avoid the issues commonly arising during the release of the polymeric nanostructures from the master. The UV-NIL has been performed to obtain OrmoComp® nanostructures using OrmoStamp® working stamps copied from Si masters. Nanoridges and nanopillars with 45 nm width and 380 nm thickness have been fabricated with a corresponding aspect ratio of 8.5. This is, to the best of our knowledge, the highest aspect ratio achieved using organic–inorganic hybrid materials at the sub-100-nm scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号