共查询到20条相似文献,搜索用时 15 毫秒
1.
针对现有模糊时间序列预测算法无法适应预测中新关系出现的问题,提出了一种基于区间相似度的模糊时间序列预测(ISFTS)算法。首先,在模糊理论的基础上,采用基于均值的方法二次划分论域的区间,在论域区间上定义相应模糊集将历史数据模糊化;然后建立三阶模糊逻辑关系并引入逻辑关系相似度的计算公式,计算未来数据变化趋势值得到预测的模糊值;最后对预测模糊值去模糊化得到预测的确定值。由于ISFTS算法是预测数据变化趋势,克服了目前预测算法的逻辑关系的缺陷。仿真实验结果表明,与同类的预测算法相比,ISFTS算法预测误差更小,在误差相对比(MAPE)、绝对误差均值(MAE)和均方根误差(RMSE)三项指标上均优于同类的对比算法,因此ISFTS算法在时间序列预测中尤其是大数据量情况下的预测具有更强的适应性。 相似文献
2.
Sheng-Tun Li Yi-Chung Cheng Su-Yu Lin 《Computers & Mathematics with Applications》2008,56(12):3052-3063
The study of fuzzy time series has increasingly attracted much attention due to its salient capabilities of tackling uncertainty and vagueness inherent in the data collected. A variety of forecasting models including high-order models have been devoted to improving forecasting accuracy. However, the high-order forecasting approach is accompanied by the crucial problem of determining an appropriate order number. Consequently, such a deficiency was recently solved by Li and Cheng [S.-T. Li, Y.-C. Cheng, Deterministic Fuzzy time series model for forecasting enrollments, Computers and Mathematics with Applications 53 (2007) 1904–1920] using a deterministic forecasting method. In this paper, we propose a novel forecasting model to enhance forecasting functionality and allow processing of two-factor forecasting problems. In addition, this model applies fuzzy c-means (FCM) clustering to deal with interval partitioning, which takes the nature of data points into account and produces unequal-sized intervals. Furthermore, in order to cope with the randomness of initially assigned membership degrees of FCM clustering, Monte Carlo simulations are used to justify the reliability of the proposed model. The superior accuracy of the proposed model is demonstrated by experiments comparing it to other existing models using real-world empirical data. 相似文献
3.
Hia Jong Teoh Tai-Liang Chen Ching-Hsue Cheng Hsing-Hui Chu 《Expert systems with applications》2009,36(4):7888-7897
This paper proposes a hybrid model based on multi-order fuzzy time series, which employs rough sets theory to mine fuzzy logical relationship from time series and an adaptive expectation model to adjust forecasting results, to improve forecasting accuracy. Two empirical stock markets (TAIEX and NASDAQ) are used as empirical databases to verify the forecasting performance of the proposed model, and two other methodologies, proposed earlier by Chen and Yu, are employed as comparison models. Besides, to compare with conventional statistic method, the partial autocorrelation function and autoregressive models are utilized to estimate the time lags periods within the databases. Based on comparison results, the proposed model can effectively improve the forecasting performance and outperforms the listing models. From the empirical study, the conventional statistic method and the proposed model both have revealed that the estimated time lags for the two empirical databases are one lagged period. 相似文献
4.
Fuzzy time series model has been successfully employed in predicting stock prices and foreign exchange rates. In this paper, we propose a new fuzzy time series model termed as distance-based fuzzy time series (DBFTS) to predict the exchange rate. Unlike the existing fuzzy time series models which require exact match of the fuzzy logic relationships (FLRs), the distance-based fuzzy time series model uses the distance between two FLRs in selecting prediction rules. To predict the exchange rate, a two factors distance-based fuzzy time series model is constructed. The first factor of the model is the exchange rate itself and the second factor comprises many candidate variables affecting the fluctuation of exchange rates. Using the exchange rate data released by the Central Bank of Taiwan, we conducted several experiments on exchange rate forecasting. The experiment results showed that the distance-based fuzzy time series outperformed the random walk model and the artificial neural network model in terms of mean square error. 相似文献
5.
The fuzzy time series has recently received increasing attention because of its capability of dealing with vague and incomplete data. There have been a variety of models developed to either improve forecasting accuracy or reduce computation overhead. However, the issues of controlling uncertainty in forecasting, effectively partitioning intervals, and consistently achieving forecasting accuracy with different interval lengths have been rarely investigated. This paper proposes a novel deterministic forecasting model to manage these crucial issues. In addition, an important parameter, the maximum length of subsequence in a fuzzy time series resulting in a certain state, is deterministically quantified. Experimental results using the University of Alabama’s enrollment data demonstrate that the proposed forecasting model outperforms the existing models in terms of accuracy, robustness, and reliability. Moreover, the forecasting model adheres to the consistency principle that a shorter interval length leads to more accurate results. 相似文献
6.
针对目前在模糊时间序列模型中论域划分及数据模糊化方法存在的问题,首先提出了基于模糊聚类算法(FCM)的具有可调参数的模糊时间序列论域的非等分划分方法;然后,在数据模糊化时通过距离客观地定义了模糊集,并利用最小标准误差(RMSE)确定最优的预测结果和聚类数;最后,通过 Alabama 大学注册人数的预测表明了所提出算法的有效性. 相似文献
7.
There are two popular types of forecasting algorithms for fuzzy time series (FTS). One is based on intervals of universal sets of independent variables and the other is based on fuzzy clustering algorithms. Clustering based FTS algorithms are preferred since role and optimal length of intervals are not clearly understood. Therefore data of each variable are individually clustered which requires higher computational time. Fuzzy Logical Relationships (FLRs) are used in existing FTS algorithms to relate input and output data. High number of clusters and FLRs are required to establish precise input/output relations which incur high computational time. This article presents a forecasting algorithm based on fuzzy clustering (CFTS) which clusters vectors of input data instead of clustering data of each variable separately and uses linear combinations of the input variables instead of the FLRs. The cluster centers handle fuzziness and ambiguity of the data and the linear parts allow the algorithm to learn more from the available information. It is shown that CFTS outperforms existing FTS algorithms with considerably lower testing error and running time. 相似文献
8.
Recently, many fuzzy time series models have already been used to solve nonlinear and complexity issues. However, first-order fuzzy time series models have proven to be insufficient for solving these problems. For this reason, many researchers proposed high-order fuzzy time series models and focused on three main issues: fuzzification, fuzzy logical relationships, and defuzzification. This paper presents a novel high-order fuzzy time series model which overcomes the drawback mentioned above. First, it uses entropy-based partitioning to more accurately define the linguistic intervals in the fuzzification procedure. Second, it applies an artificial neural network to compute the complicated fuzzy logical relationships. Third, it uses the adaptive expectation model to adjust the forecasting during the defuzzification procedure. To evaluate the proposed model, we used datasets from both the Taiwanese stock index from 2000 to 2003 and from the student enrollment records of the University of Alabama. The results of our study show that the proposed model is able to obtain an accurate forecast without encountering conventional fuzzy time series issues. 相似文献
9.
Hao-Tien Liu 《Expert systems with applications》2009,36(6):10045-10053
A number of fuzzy time series models have been designed and developed during the last decade. One problem of these models is that they only provide a single-point forecasted value just like the output of the crisp time series methods. In addition, these models are suitable for forecasting stationary or trend time series, but they are not appropriate for forecasting seasonal time series. Hence, the objective of this study is to develop an integrated fuzzy time series forecasting system in which the forecasted value will be a trapezoidal fuzzy number instead of a single-point value. Furthermore, this system can effectively deal with stationary, trend, and seasonal time series and increase the forecasting accuracy. Two numerical data sets are selected to illustrate the proposed method and compare the forecasting accuracy with four fuzzy time series methods. The results of the comparison show that our system can produce more precise forecasted values than those of four methods. 相似文献
10.
《国际计算机数学杂志》2012,89(7):781-789
This article presents an improved method of fuzzy time series to forecast university enrollments. The historical enrollment data of the University of Alabama were first adopted by Song and Chissom (Song, Q. and Chissom, B. S. (1993). Forecasting enrollment with fuzzy time series-part I, Fuzzy Sets and Systems, 54, 1–9; Song, Q. and Chissom, B. S. (1994). Forecasting enrollment with fuzzy time series-part II, Fuzzy Sets and Systems, 54, 267–277) to illustrate the forecasting process of the fuzzy time series. Later, Chen proposed a simpler method. In this article, we show that our method is as simple as Chen's method but more accurate. In forecasting the enrollment of the University of Alabama, the root mean square percentage error (RMSPE) of our method is 3.1113% while the RMSPE of Chen's method is 4.0516%, which shows that our method is doing much better. 相似文献
11.
Pritpal Singh Bhogeswar Borah 《Engineering Applications of Artificial Intelligence》2013,26(10):2443-2457
In this paper, we present a new model to handle four major issues of fuzzy time series forecasting, viz., determination of effective length of intervals, handling of fuzzy logical relationships (FLRs), determination of weight for each FLR, and defuzzification of fuzzified time series values. To resolve the problem associated with the determination of length of intervals, this study suggests a new time series data discretization technique. After generating the intervals, the historical time series data set is fuzzified based on fuzzy time series theory. Each fuzzified time series values are then used to create the FLRs. Most of the existing fuzzy time series models simply ignore the repeated FLRs without any proper justification. Since FLRs represent the patterns of historical events as well as reflect the possibility of appearances of these types of patterns in the future. If we simply discard the repeated FLRs, then there may be a chance of information lost. Therefore, in this model, it is recommended to consider the repeated FLRs during forecasting. It is also suggested to assign weights on the FLRs based on their severity rather than their patterns of occurrences. For this purpose, a new technique is incorporated in the model. This technique determines the weight for each FLR based on the index of the fuzzy set associated with the current state of the FLR. To handle these weighted FLRs and to obtain the forecasted results, this study proposes a new defuzzification technique. The proposed model is verified and validated with three different time series data sets. Empirical analyses signify that the proposed model have the robustness to handle one-factor time series data set very efficiently than the conventional fuzzy time series models. Experimental results show that the proposed model also outperforms over the conventional statistical models. 相似文献
12.
In this paper, a computational method of forecasting based on fuzzy time series have been developed to provide improved forecasting results to cope up the situation containing higher uncertainty due to large fluctuations in consecutive year's values in the time series data and having no visualization of trend or periodicity. The proposed model is of order three and uses a time variant difference parameter on current state to forecast the next state. The developed model has been tested on the historical student enrollments, University of Alabama to have comparison with the existing methods and has been implemented for forecasting of a crop production system of lahi crop, containing higher uncertainty. The suitability of the developed model has been examined in comparison with the other models to show its superiority. 相似文献
13.
Multimedia Tools and Applications - Stock price forecasting is the most difficult field owing to irregularities. Therefore, the stock price forecasting and recommendation is an extremely... 相似文献
14.
根据模糊时间序列的模型和算法,本文利用Type-2型模糊隶属度的"宽带"效应具有处理更多信息的特点,给出了基于Type-2模糊时间序列的预测方法,克服了Type-1模糊时间序列模型只用到一个变量进行预测的缺点.避免了只有部分观测值在预测中用到,提高了青霉素发酵过程生物质浓度预测的准确性,实现青霉素发酵过程生物质浓度的测量. 相似文献
15.
In the paper a model to predict the concentrations of particulate matter PM10, PM2.5, SO2, NO, CO and O3 for a chosen number of hours forward is proposed. The method requires historical data for a large number of points in time, particularly weather forecast data, actual weather data and pollution data. The idea is that by matching forecast data with similar forecast data in the historical data set it is possible then to obtain actual weather data and through this pollution data. To aggregate time points with similar forecast data determined by a distance function, fuzzy numbers are generated from the forecast data, covering forecast data and actual data. Again using a distance function, actual data is compared with the fuzzy number to determine how the grade of membership is. The model was prepared in such a way that all the data which is usually imprecise, chaotic, uncertain can be used. The model is used in Poland by the Institute of Meteorology and by Water Management, and by the Voivodship Inspector for Environmental Protection. It forecast selected pollution concentrations for all areas of Poland. 相似文献
16.
Forecasting the future values of a time series is a common research topic and is studied using probabilistic and non-probabilistic methods. For probabilistic methods, the autoregressive integrated moving average and exponential smoothing methods are commonly used, whereas for non-probabilistic methods, artificial neural networks and fuzzy inference systems (FIS) are commonly used. There are numerous FIS methods. While most of these methods are rule-based, there are a few methods that do not require rules, such as the type-1 fuzzy function (T1FF) approach. While it is possible to encounter a method such as an autoregressive (AR) model integrated with a T1FF, no method that includes T1FF and the moving average (MA) model in one algorithm has yet been proposed. The aim of this study is to improve forecasting by taking the disturbance terms into account. The input dataset is organized using the following variables. First, the lagged values of the time series are used for the AR model. Second, a fuzzy c-means clustering algorithm is used to cluster the inputs. Third, for the MA, the residuals of fuzzy functions are used. Hence, AR, MA, and the degree of memberships of the objects are included in the input dataset. Because the objective function is not derivative, particle swarm optimization is preferable for solving it. The results on several datasets show that the proposed method outperforms most of the methods in literature. 相似文献
17.
In this paper, we present a computational method of forecasting based on multiple partitioning and higher order fuzzy time series. The developed computational method provides a better approach to enhance the accuracy in forecasted values. The objective of the present study is to establish the fuzzy logical relations of different order for each forecast. Robustness of the proposed method is also examined in case of external perturbation that causes the fluctuations in time series data. The general suitability of the developed model has been tested by implementing it in forecasting of student enrollments at University of Alabama. Further it has also been implemented in the forecasting the market price of share of State Bank of India (SBI) at Bombay Stock Exchange (BSE), India. In order to show the superiority of the proposed model over few existing models, the results obtained have been compared in terms of mean square and average forecasting errors. 相似文献
18.
Shiva Raj Singh 《Expert systems with applications》2009,36(7):10551-10559
This paper presents a computational method of forecasting based on high-order fuzzy time series. The developed computational method provides a better approach to overcome the drawback of existing high-order fuzzy time series models. Its simplicity lies with the use of differences in consecutive values of various orders as forecasting parameter and a w-step fuzzy predictor in place of complicated computations of fuzzy logical relations. The objective of the present study is to examine the suitability of various high-order fuzzy time series models in forecasting. The general suitability of the developed method has been tested by implementing it in the forecasting of student enrollments of the University of Alabama and in the forecasting of crop (Lahi) production, a case of high uncertainty in time series data. The results obtained have been compared in terms of average error of forecast to show superiority of the proposed model. 相似文献
19.
José Luis Aznarte Jesús Alcalá-Fdez Antonio Arauzo-Azofra José Manuel Benítez 《Expert systems with applications》2012,39(16):12302-12309
In general, times series forecasting is considered as a highly complex problem, which is particularly true for financial time series. In this paper, a fuzzy model evolved through a bio-inspired algorithm is proposed to produce accurate models for the prediction of these time series. The performance of this model is compared to that of a group of state-of-the-art statistical models. A thorough experimental study is designed and carry out in order to assess the merits of the proposal. The experimental results allow us to state that our proposal forecasts consistently outperform the other considered methods. 相似文献
20.
R. A. Aliev B. Fazlollahi R. R. Aliev B. Guirimov 《Soft Computing - A Fusion of Foundations, Methodologies and Applications》2008,12(2):183-190
It is known that one of the most spread forecasting methods is the time series analysis. A weakness of traditional crisp time
series forecasting methods is that they process only measurement based numerical information and cannot deal with the perception-based
historical data represented by linguistic values. Application of a new class of time series, a fuzzy time series whose values
are linguistic values, can overcome the mentioned weakness of traditional forecasting methods. In this paper we propose a
fuzzy recurrent neural network (FRNN) based time series forecasting method for solving forecasting problems in which the data
can be presented as perceptions and described by fuzzy numbers. The FRNN allows effectively handle fuzzy time series to apply
human expertise throughout the forecasting procedure and demonstrates more adequate forecasting results. Recurrent links in
FRNN also allow for simplification of the overall network structure (size) and forecasting procedure. Genetic algorithm-based
procedure is used for training the FRNN. The effectiveness of the proposed fuzzy time series forecasting method is tested
on the benchmark examples. 相似文献