共查询到20条相似文献,搜索用时 15 毫秒
1.
Rosana de Almeida Santos Karina Dutra Asensi Julia Helena Oliveira de Barros Rafael Campos Silva de Menezes Ingrid Rosenburg Cordeiro Jos Marques de Brito Neto Tais Hanae Kasai-Brunswick Regina Coeli dos Santos Goldenberg 《International journal of molecular sciences》2020,21(24)
Several therapies are being developed to increase blood circulation in ischemic tissues. Despite bone marrow-derived mesenchymal stromal cells (bmMSC) are still the most studied, an interesting and less invasive MSC source is the menstrual blood, which has shown great angiogenic capabilities. Therefore, the aim of this study was to evaluate the angiogenic properties of menstrual blood-derived mesenchymal stromal cells (mbMSC) in vitro and in vivo and compared to bmMSC. MSC’s intrinsic angiogenic capacity was assessed by sprouting and migration assays. mbMSC presented higher invasion and longer sprouts in 3D culture. Additionally, both MSC-spheroids showed cells expressing CD31. mbMSC and bmMSC were able to migrate after scratch wound in vitro, nonetheless, only mbMSC demonstrated ability to engraft in the chick embryo, migrating to perivascular, perineural, and chondrogenic regions. In order to study the paracrine effects, mbMSC and bmMSC conditioned mediums were capable of stimulating HUVEC’s tube-like formation and migration. Both cells expressed VEGF-A and FGF2. Meanwhile, PDGF-B was expressed exclusively in mbMSC. Our results indicated that mbMSC and bmMSC presented a promising angiogenic potential. However, mbMSC seems to have additional advantages since it can be obtained by non-invasive procedure and expresses PDGF-B, an important molecule for vascular formation and remodeling. 相似文献
2.
Enrico Ragni Carlotta Perucca Orfei Paola De Luca Francesca Libonati Laura de Girolamo 《International journal of molecular sciences》2022,23(24)
Bone-marrow-mesenchymal-stromal-cells (BMSCs)- and platelet-rich-plasma (PRP)-based therapies have shown potential for treating osteoarthritis (OA). Recently, the combination of these two approaches was proposed, with results that overcame those observed with the separate treatments, indicating a possible role of PRP in ameliorating BMSCs’ regenerative properties. Since a molecular fingerprint of BMSCs cultivated in the presence of PRP is missing, the aim of this study was to characterize the secretome in terms of soluble factors and extracellular-vesicle (EV)-embedded miRNAs from the perspective of tissues, pathways, and molecules which frame OA pathology. One hundred and five soluble factors and one hundred eighty-four EV-miRNAs were identified in the PRP-treated BMSCs’ secretome, respectively. Several soluble factors were related to the migration of OA-related immune cells, suggesting the capacity of BMSCs to attract lympho-, mono-, and granulocytes and modulate their inflammatory status. Accordingly, several EV-miRNAs had an immunomodulating role at both the single-factor and cell level, together with the ability to target OA-characterizing extracellular-matrix-degrading enzymes and cartilage destruction pathways. Overall, anti-inflammatory and protective signals far exceeded inflammation and destruction cues for cartilage, macrophages, and T cells. This study demonstrates that BMSCs cultivated in the presence of PRP release therapeutic molecules and give molecular ground for the use of this combined and innovative therapy for OA treatment. 相似文献
3.
Alec Geßner Benjamin Koch Kevin Klann Dominik C. Fuhrmann Samira Farmand Ralf Schubert Christian Münch Helmut Geiger Patrick C. Baer 《International journal of molecular sciences》2021,22(6)
Cell-free therapy using extracellular vesicles (EVs) from adipose-derived mesenchymal stromal/stem cells (ASCs) seems to be a safe and effective therapeutic option to support tissue and organ regeneration. The application of EVs requires particles with a maximum regenerative capability and hypoxic culture conditions as an in vitro preconditioning regimen has been shown to alter the molecular composition of released EVs. Nevertheless, the EV cargo after hypoxic preconditioning has not yet been comprehensively examined. The aim of the present study was the characterization of EVs from hypoxic preconditioned ASCs. We investigated the EV proteome and their effects on renal tubular epithelial cells in vitro. While no effect of hypoxia was observed on the number of released EVs and their protein content, the cargo of the proteins was altered. Proteomic analysis showed 41 increased or decreased proteins, 11 in a statistically significant manner. Furthermore, the uptake of EVs in epithelial cells and a positive effect on oxidative stress in vitro were observed. In conclusion, culture of ASCs under hypoxic conditions was demonstrated to be a promising in vitro preconditioning regimen, which alters the protein cargo and increases the anti-oxidative potential of EVs. These properties may provide new potential therapeutic options for regenerative medicine. 相似文献
4.
Federica Marinaro Joana M. Silva Alexandre A. Barros Ivo M. Aroso Juan C. Gmez-Blanco Isaac Jardin Jose J. Lopez María Pulido María ngeles de Pedro Rui L. Reis Francisco Miguel Snchez-Margallo Javier G. Casado Esther Lpez 《International journal of molecular sciences》2021,22(24)
Polypropylene (PP) mesh is well-known as a gold standard of all prosthetic materials of choice for the reinforcement of soft tissues in case of hernia, organ prolapse, and urinary incontinence. The adverse effects that follow surgical mesh implantation remain an unmet medical challenge. Herein, it is outlined a new approach to allow viability and adhesion of human menstrual blood-derived mesenchymal stromal cells (MenSCs) on PP surgical meshes. A multilayered fibrin coating, based on fibrinogen and thrombin from a commercial fibrin sealant, was optimized to guarantee a homogeneous and stratified film on PP mesh. MenSCs were seeded on the optimized fibrin-coated meshes and their adhesion, viability, phenotype, gene expression, and immunomodulatory capacity were fully evaluated. This coating guaranteed MenSC viability, adhesion and did not trigger any change in their stemness and inflammatory profile. Additionally, MenSCs seeded on fibrin-coated meshes significantly decreased CD4+ and CD8+ T cell proliferation, compared to in vitro stimulated lymphocytes (p < 0.0001). Hence, the proposed fibrin coating for PP surgical meshes may allow the local administration of stromal cells and the reduction of the exacerbated inflammatory response following mesh implantation surgery. Reproducible and easy to adapt to other cell types, this method undoubtedly requires a multidisciplinary and translational approach to be improved for future clinical uses. 相似文献
5.
6.
Stella Chin-Shaw Tsai Kuender D. Yang Kuang-Hsi Chang Frank Cheau-Feng Lin Ruey-Hwang Chou Min-Chih Li Ching-Chang Cheng Chien-Yu Kao Chie-Pein Chen Hung-Ching Lin Yi-Chao Hsu 《International journal of molecular sciences》2021,22(13)
Umbilical cord-derived mesenchymal stromal cells (UCMSCs) have potential applications in regenerative medicine. UCMSCs have been demonstrated to repair tissue damage in many inflammatory and degenerative diseases. We have previously shown that UCMSC exosomes reduce nerve injury-induced pain in rats. In this study, we characterized UCMSC exosomes using RNA sequencing and proteomic analyses and investigated their protective effects on cisplatin-induced hearing loss in mice. Two independent experiments were designed to investigate the protective effects on cisplatin-induced hearing loss in mice: (i) chronic intraperitoneal cisplatin administration (4 mg/kg) once per day for 5 consecutive days and intraperitoneal UCMSC exosome (1.2 μg/μL) injection at the same time point; and (ii) UCMSC exosome (1.2 μg/μL) injection through a round window niche 3 days after chronic cisplatin administration. Our data suggest that UCMSC exosomes exert protective effects in vivo. The post-traumatic administration of UCMSC exosomes significantly improved hearing loss and rescued the loss of cochlear hair cells in mice receiving chronic cisplatin injection. Neuropathological gene panel analyses further revealed the UCMSC exosomes treatment led to beneficial changes in the expression levels of many genes in the cochlear tissues of cisplatin-injected mice. In conclusion, UCMSC exosomes exerted protective effects in treating ototoxicity-induced hearing loss by promoting tissue remodeling and repair. 相似文献
7.
Maria Antonietta Grignano Stefania Bruno Simona Viglio Maria Antonietta Avanzini Marta Tapparo Marina Ramus Stefania Croce Chiara Valsecchi Eleonora Francesca Pattonieri Gabriele Ceccarelli Federica Manzoni Annalia Asti Carmelo Libetta Vincenzo Sepe Paolo Iadarola Marilena Gregorini Teresa Rampino 《International journal of molecular sciences》2022,23(18)
We propose a new organ-conditioning strategy based on mesenchymal stromal cell (MSCs)/extracellular vesicle (EVs) delivery during hypothermic perfusion. MSCs/EVs marker CD73 is present on renal proximal tubular cells, and it protects against renal ischemia-reperfusion injury by converting adenosine monophosphate into adenosine (ADO). In this study, after checking if CD73-silenced EVs (EVsi) would impact in vitro tubular-cell proliferation, we perfused kidneys of a rat model of donation after circulatory death, with Belzer solution (BS) alone, BS supplemented with MSCs, EVs, or EVsi. The ADO and ATP levels were measured in the effluents and tissues. Global renal ischemic damage score (GRS), and tubular cell proliferation index (IPT) were evaluated in the tissue. EVsi did not induce cell proliferation in vitro. Ex vivo kidneys perfused with BS or BS + EVsi showed the worst GRS and higher effluent ADO levels than the MSC- and EV-perfused kidneys. In the EV-perfused kidneys, the tissue and effluent ATP levels and IPT were the highest, but not if CD73 was silenced. Tissue ATP content was positively correlated with tissue ADO content and negatively correlated with effluent ADO level in all groups. In conclusion, kidney conditioning with EVs protects against ischemic damage by activating the CD73/ADO system. 相似文献
8.
9.
Marta Clos-Sansalvador Sergio G. Garcia Miriam Morn-Font Charles Williams Niels-Christian Reichardt Juan M. Falcn-Prez Antoni Bayes-Genis Santiago Roura Marcella Franquesa Marta Mongui-Tortajada Francesc E. Borrs 《International journal of molecular sciences》2022,23(17)
Mesenchymal stromal cell-derived extracellular vesicles (MSC-EV) are widely considered as a cell-free therapeutic alternative to MSC cell administration, due to their immunomodulatory and regenerative properties. However, the interaction mechanisms between EV and target cells are not fully understood. The surface glycans could be key players in EV–cell communication, being specific molecular recognition patterns that are still little explored. In this study, we focused on the role of N-glycosylation of MSC-EV as mediators of MSC-EV and endothelial cells’ interaction for subsequent EV uptake and the induction of cell migration and angiogenesis. For that, EV from immortalized Wharton’s Jelly MSC (iWJ-MSC-EV) were isolated by size exclusion chromatography (SEC) and treated with the glycosidase PNGase-F in order to remove wild-type N-glycans. Then, CFSE-labelled iWJ-MSC-EV were tested in the context of in vitro capture, agarose-spot migration and matrigel-based tube formation assays, using HUVEC. As a result, we found that the N-glycosylation in iWJ-MSC-EV is critical for interaction with HUVEC cells. iWJ-MSC-EV were captured by HUVEC, stimulating their tube-like formation ability and promoting their recruitment. Conversely, the removal of N-glycans through PNGase-F treatment reduced all of these functional activities induced by native iWJ-MSC-EV. Finally, comparative lectin arrays of iWJ-MSC-EV and PNGase-F-treated iWJ-MSC-EV found marked differences in the surface glycosylation pattern, particularly in N-acetylglucosamine, mannose, and fucose-binding lectins. Taken together, our results highlight the importance of N-glycans in MSC-EV to permit EV–cell interactions and associated functions. 相似文献
10.
Sean T. Ryan Elham Hosseini-Beheshti Dinara Afrose Xianting Ding Binbin Xia Georges E. Grau Christopher B. Little Lana McClements Jiao Jiao Li 《International journal of molecular sciences》2021,22(6)
Over the past two decades, mesenchymal stromal cells (MSCs) have demonstrated great potential in the treatment of inflammation-related conditions. Numerous early stage clinical trials have suggested that this treatment strategy has potential to lead to significant improvements in clinical outcomes. While promising, there remain substantial regulatory hurdles, safety concerns, and logistical issues that need to be addressed before cell-based treatments can have widespread clinical impact. These drawbacks, along with research aimed at elucidating the mechanisms by which MSCs exert their therapeutic effects, have inspired the development of extracellular vesicles (EVs) as anti-inflammatory therapeutic agents. The use of MSC-derived EVs for treating inflammation-related conditions has shown therapeutic potential in both in vitro and small animal studies. This review will explore the current research landscape pertaining to the use of MSC-derived EVs as anti-inflammatory and pro-regenerative agents in a range of inflammation-related conditions: osteoarthritis, rheumatoid arthritis, Alzheimer’s disease, cardiovascular disease, and preeclampsia. Along with this, the mechanisms by which MSC-derived EVs exert their beneficial effects on the damaged or degenerative tissues will be reviewed, giving insight into their therapeutic potential. Challenges and future perspectives on the use of MSC-derived EVs for the treatment of inflammation-related conditions will be discussed. 相似文献
11.
Giovanni Schepici Agnese Gugliandolo Emanuela Mazzon 《International journal of molecular sciences》2022,23(4)
Neurological diseases represent one of the main causes of disability in human life. Consequently, investigating new strategies capable of improving the quality of life in neurological patients is necessary. For decades, researchers have been working to improve the efficacy and safety of mesenchymal stromal cells (MSCs) therapy based on MSCs’ regenerative and immunomodulatory properties and multilinear differentiation potential. Therefore, strategies such as MSCs preconditioning are useful to improve their application to restore damaged neuronal circuits following neurological insults. This review is focused on preconditioning MSCs therapy as a potential application to major neurological diseases. The aim of our work is to summarize both the in vitro and in vivo studies that demonstrate the efficacy of MSC preconditioning on neuronal regeneration and cell survival as a possible application to neurological damage. 相似文献
12.
13.
Marta Gmez-Ferrer Estela Villanueva-Badenas Rafael Snchez-Snchez Christian M. Snchez-Lpez Maria Carmen Baquero Pilar Sepúlveda Akaitz Dorronsoro 《International journal of molecular sciences》2021,22(7)
Despite the strong evidence for the immunomodulatory activity of mesenchymal stromal cells (MSCs), clinical trials have so far failed to clearly show benefit, likely reflecting methodological shortcomings and lack of standardization. MSC-mediated tissue repair is commonly believed to occur in a paracrine manner, and it has been stated that extracellular vesicles (EVs) secreted by MSCs (EVMSC) are able to recapitulate the immunosuppressive properties of parental cells. As a next step, clinical trials to corroborate preclinical studies should be performed. However, effective dose in large mammals, including humans, is quite high and EVs industrial production is hindered by the proliferative senescence that affects MSCs during massive cell expansion. We generated a genetically modified MSC cell line overexpressing hypoxia-inducible factor 1-alpha and telomerase to increase the therapeutic potency of EVMSC and facilitate their large-scale production. We also developed a cytokine-based preconditioning culture medium to prime the immunomodulatory response of secreted EVs (EVMSC-T-HIFc). We tested the efficacy of this system in vitro and in a delayed-type hypersensitivity mouse model. MSC-T with an HIF-1α-GFP lentiviral vector (MSC-T-HIF) can be effectively expanded to obtain large amounts of EVs without major changes in cell phenotype and EVs composition. EVMSC-T-HIFc suppressed the proliferation of activated T-cells more effectively than did EVs from unmodified MSC in vitro, and significantly blunted the ear-swelling response in vivo by inhibiting cell infiltration and improving tissue integrity. We have developed a long-lived EV source that secretes high quantities of immunosuppressive EVs, facilitating a more standard and cost-effective therapeutic product. 相似文献
14.
Giedr Skliut Raminta Bauyt Veronika Borutinskait Giedr Valiulien Algirdas Kaupinis Mindaugas Valius Diana Ramaauskait Rta Navakauskien 《International journal of molecular sciences》2021,22(13)
When looking for the causes and treatments of infertility, much attention is paid to one of the reproductive tissues—the endometrium. Therefore, endometrial stem cells are an attractive target for infertility studies in women of unexplained origin. Menstrual blood stem cells (MenSCs) are morphologically and functionally similar to cells derived directly from the endometrium; with dual expression of mesenchymal and embryonic cell markers, they proliferate and regenerate better than bone marrow mesenchymal stem cells. In addition, menstrual blood stem cells are extracted in a non-invasive and painless manner. In our study, we analyzed the characteristics and the potential for decidualization of menstrual blood stem cells isolated from healthy volunteers and women diagnosed with infertility. We demonstrated that MenSCs express CD44, CD166, CD16, CD15, BMSC, CD56, CD13 and HLA-ABC surface markers, have proliferative properties, and after induction of menstrual stem cell differentiation into epithelial direction, expression of genes related to decidualization (PRL, ESR, IGFBP and FOXO1) and angiogenesis (HIF1, VEGFR2 and VEGFR3) increased. Additionally, the p53, p21, H3K27me3 and HyperAcH4 proteins’ expression increased during MenSCs decidualization, they secrete proteins that are involved in the regulation of the actin cytoskeleton, estrogen and relaxin signaling pathways and the management of inflammatory processes. Our findings reveal the potential use of MenSCs for the treatment of reproductive disorders. 相似文献
15.
Amanda L. Scheiber Cierra A. Clark Takashi Kaito Masahiro Iwamoto Edwin M. Horwitz Yuka Imamura Kawasawa Satoru Otsuru 《International journal of molecular sciences》2022,23(3)
Extracellular vesicles (EVs) released by bone marrow stromal cells (BMSCs) have been shown to act as a transporter of bioactive molecules such as RNAs and proteins in the therapeutic actions of BMSCs in various diseases. Although EV therapy holds great promise to be a safer cell-free therapy overcoming issues related to cell therapy, manufacturing processes that offer scalable and reproducible EV production have not been established. Robust and scalable BMSC manufacturing methods have been shown to enhance EV production; however, the effects on EV quality remain less studied. Here, using human BMSCs isolated from nine healthy donors, we examined the effects of high-performance culture media that can rapidly expand BMSCs on EV production and quality in comparison with the conventional culture medium. We found significantly increased EV production from BMSCs cultured in the high-performance media without altering their multipotency and immunophenotypes. RNA sequencing revealed that RNA contents in EVs from high-performance media were significantly reduced with altered profiles of microRNA enriched in those related to cellular growth and proliferation in the pathway analysis. Given that pre-clinical studies at the laboratory scale often use the conventional medium, these findings could account for the discrepancy in outcomes between pre-clinical and clinical studies. Therefore, this study highlights the importance of selecting proper culture conditions for scalable and reproducible EV manufacturing. 相似文献
16.
Sílvia C. Rodrigues Renato M. S. Cardoso Patricia C. Freire Cludia F. Gomes Filipe V. Duarte Ricardo Pires das Neves Joana Simes-Correia 《International journal of molecular sciences》2021,22(18)
Umbilical cord blood (UCB) has long been seen as a rich source of naïve cells with strong regenerative potential, likely mediated by paracrine signals. More recently, small extracellular vesicles (sEV), such as exosomes, have been shown to play essential roles in cell-to-cell communication, via the transport of numerous molecules, including small RNAs. Often explored for their potential as biomarkers, sEV are now known to have regenerative and immunomodulating characteristics, particularly if isolated from stem cell-rich tissues. In this study, we aim to characterize the immunomodulating properties of umbilical cord blood mononuclear cell-derived sEV (UCB-MNC-sEV) and explore their therapeutic potential for inflammatory skin diseases. UCB-MNC-sEV were shown to shift macrophages toward an anti-inflammatory phenotype, which in turn exert paracrine effects on fibroblasts, despite previous inflammatory stimuli. Additionally, the incubation of PBMC with UCB-MNC-sEV resulted in a reduction of total CD4+ and CD8+ T-cell proliferation and cytokine release, while specifically supporting the development of regulatory T-cells (Treg), by influencing FOXP3 expression. In a 3D model of psoriatic skin, UCB-MNC-sEV reduced the expression of inflammatory and psoriatic markers IL6, IL8, CXCL10, COX2, S100A7, and DEFB4. In vivo, UCB-MNC-sEV significantly prevented or reversed acanthosis in imiquimod-induced psoriasis, and tendentially increased the number of Treg in skin, without having an overall impact on disease burden. This work provides evidence for the anti-inflammatory and tolerogenic effect of UCB-MNC-sEV, which may be harnessed for the treatment of Th17-driven inflammatory skin diseases, such as psoriasis. 相似文献
17.
Mesenchymal stem/stromal cells (MSCs) are widely described in the context of their regenerative and immunomodulatory activity. MSCs are isolated from various tissues and organs. The most frequently described sources are bone marrow and adipose tissue. As stem cells, MSCs are able to differentiate into other cell lineages, but they are usually reported with respect to their paracrine potential. In this review, we focus on MSCs derived from adipose tissue (AT-MSCs) and their secretome in regeneration processes. Special attention is given to the contribution of AT-MSCs and their derivatives to angiogenic processes described mainly in the context of angiogenic dysfunction. Finally, we present clinical trials registered to date that concern the application of AT-MSCs and their secretome in various medical conditions. 相似文献
18.
Vanessa Kohl Oliver Drews Victor Costina Miriam Bierbaum Ahmed Jawhar Henning Roehl Christel Weiss Susanne Brendel Helga Kleiner Johanna Flach Birgit Spiess Wolfgang Seifarth Daniel Nowak Wolf-Karsten Hofmann Alice Fabarius Henning D. Popp 《International journal of molecular sciences》2021,22(11)
Non-targeted effects (NTE) of ionizing radiation may initiate myeloid neoplasms (MN). Here, protein mediators (I) in irradiated human mesenchymal stromal cells (MSC) as the NTE source, (II) in MSC conditioned supernatant and (III) in human bone marrow CD34+ cells undergoing genotoxic NTE were investigated. Healthy sublethal irradiated MSC showed significantly increased levels of reactive oxygen species. These cells responded by increasing intracellular abundance of proteins involved in proteasomal degradation, protein translation, cytoskeleton dynamics, nucleocytoplasmic shuttling, and those with antioxidant activity. Among the increased proteins were THY1 and GNA11/14, which are signaling proteins with hitherto unknown functions in the radiation response and NTE. In the corresponding MSC conditioned medium, the three chaperones GRP78, CALR, and PDIA3 were increased. Together with GPI, these were the only four altered proteins, which were associated with the observed genotoxic NTE. Healthy CD34+ cells cultured in MSC conditioned medium suffered from more than a six-fold increase in γH2AX focal staining, indicative for DNA double-strand breaks, as well as numerical and structural chromosomal aberrations within three days. At this stage, five proteins were altered, among them IQGAP1, HMGB1, and PA2G4, which are involved in malign development. In summary, our data provide novel insights into three sequential steps of genotoxic signaling from irradiated MSC to CD34+ cells, implicating that induced NTE might initiate the development of MN. 相似文献
19.
Cinzia Maria Chinnici Gioacchin Iannolo Ettore Cittadini Anna Paola Carreca David Nascari Francesca Timoneri Mariangela Di Bella Nicola Cuscino Giandomenico Amico Claudia Carcione Pier Giulio Conaldi 《International journal of molecular sciences》2021,22(4)
Despite low levels of vascular endothelial growth factor (VEGF)-A, the secretome of human Wharton’s jelly (WJ) mesenchymal stromal cells (MSCs) effectively promoted proangiogenic responses in vitro, which were impaired upon the depletion of small (~140 nm) extracellular vesicles (EVs). The isolated EVs shared the low VEGF-A profile of the secretome and expressed five microRNAs, which were upregulated compared to fetal dermal MSC-derived EVs. These upregulated microRNAs exclusively targeted the VEGF-A gene within 54 Gene Ontology (GO) biological processes, 18 of which are associated with angiogenesis. Moreover, 15 microRNAs of WJ-MSC-derived EVs were highly expressed (Ct value ≤ 26) and exclusively targeted the thrombospondin 1 (THBS1) gene within 75 GO biological processes, 30 of which are associated with the regulation of tissue repair. The relationship between predicted microRNA target genes and WJ-MSC-derived EVs was shown by treating human umbilical-vein endothelial cells (HUVECs) with appropriate doses of EVs. The exposure of HUVECs to EVs for 72 h significantly enhanced the release of VEGF-A and THBS1 protein expression compared to untreated control cells. Finally, WJ-MSC-derived EVs stimulated in vitro tube formation along with the migration and proliferation of HUVECs. Our findings can contribute to a better understanding of the molecular mechanisms underlying the proangiogenic responses induced by human umbilical cord-derived MSCs, suggesting a key regulatory role for microRNAs delivered by EVs. 相似文献
20.
Svetlana V. Demyanenko Maria A. Pitinova Yulia N. Kalyuzhnaya Andrey M. Khaitin Svetlana A. Batalshchikova Natalya M. Dobaeva Yulia A. Shevtsova Kirill V. Goryunov Egor Y. Plotnikov Svetlana G. Pashkevich Gennady T. Sukhikh Denis N. Silachev 《International journal of molecular sciences》2022,23(15)
Peripheral nerve injury remains a serious problem for medicine, with no effective method of treatment at the moment. The most prominent example of this problem is neonatal brachial plexus palsy, which results from the stretching of the brachial plexus nerves in the birth or perinatal period. Multipotent mesenchymal cells (MSCs) and the extracellular vesicles (EVs) they produce are known to have a marked neuroprotective effect in central nervous system injuries. We suggested that the use of MSCs-derived EVs may be an effective approach to the regeneration of peripheral nerves after injury. Sciatic nerve injury was modeled in rats via crushing, and then a gel containing MSCs–EVs was applied to the injured area. After 15 and 30 days, a histological, physiological, and functional assessment of nerve, dorsal root ganglia (DRG), and innervated muscles’ recovery was performed. Transplantation of EVs to the area of sciatic nerve injury significantly reduced muscle atrophy as compared to the control group. Functional recovery of the innervated muscles, as measured by the extensor postural thrust test, was revealed 30 days after the surgery. We associate the obtained results with EVs-induced neuroprotective mechanisms, which were expressed in a decrease in apoptotic neuronal death and an increase in regeneration-associated proteins NF-200 and GAP-43, as well as in DRG and damaged nerve. We suggest that the therapeutic scheme we used is efficient for the treatment of acute peripheral nervous system injuries and can be transferred to the clinics. However, additional studies are required for a more detailed analysis of neuroprotection mechanisms. 相似文献