首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of this study was to investigate the performance of the upflow anaerobic sludge blanket (UASB) reactor as the pretreatment system for silk-dyeing wastewater. Two laboratory-scale UASB reactors, with working volume of 15.59 I, were used during May 1998 to June 1999. The actual wastewater was diluted to reduce ammonium ion toxicity on anaerobic bacteria. The experiments were conducted at the organic loading rates (OLRs) of 0.52, 1.01, 1.04, 1.54 and 2.56 kgCOD/(m3 x d), treating only wastewater generated from the acid-dye process of mixed-species raw silk. It took approximately 4 1/2 months to reach the steady-state conditions. It was found that the COD removal was in the ranges of 74.1-85.3%, except at OLR 2.56 kgCOD/(m3 x d) where efficiency significantly dropped to 55.2%. The apparent color removal was in the similar trend as COD. During the study periods, wastewater input had various color shades while the effluent generally looked pale yellowish. The methane generation rates ranged from 0.18-0.31 m3/kg COD removed, with methane composition 81.0-88.1% in biogas. The average granule size in the sludge bed had slowly increased to 0.73 mm in the last experiment. It can be concluded that the UASB reactor is suitable as a pretreatment system for silk-dyeing wastewater. An OLR of 1 kgCOD/(m3 x d) and an influent concentration diluted to 2,600 mgCOD/l are suggested while COD and apparent color removal efficiency of 80% and 70%, respectively, can be expected.  相似文献   

2.
The efficiency of ozone as a pre- and post-treatment to UASB treatment was investigated, followed by a study into UASB reactor performance with ozonated wastewater as substrate. Combinations of pre- and/or post-ozonation with UASB treatment gave better results than ozonation or UASB alone and COD reductions of 53.0-98.9% were achieved for treatment of canning and winery wastewaters. A UASB reactor was fed with pre-ozonated cannery wastewater for over 70 d. COD removal improved from between 58.8 and 64.4% to between 85.3 and 91.8% after pre-ozonated substrate feed commenced. Subsequent increases in organic loading rate (OLR) from 2.4 to 3.4 kgCOD m(-3) x d(-1) did not affect reactor performance. By including a final post-ozonation treatment to this UASB effluent a total COD reduction of 99.2% was achieved.  相似文献   

3.
A full scale UASB reactor treating the effluent of a malting plant was operated during nearly two years. During 37 weeks of operation the reactor worked with a COD removal efficiency of 80% and a biogas production of nearly 300 m(3)/d with a methane content of 77%. After the start up and during these months of operation the volumetric organic load was 4 kgCOD/m(3).d and the specific organic load was between 0.2-0.4 kgCOD/kgVSS.d. The sludge SMA in this period was around 0.25 kgCOD/kg VSS.d. On week 37 as a result of a problem at the industrial process the pH in the reactor dropped to a value of 4.8. After pH recovering, the reactor worked with fluctuating COD values in the exit and showed a downward trend in the COD removal efficiency. On week 81 the presence of filaments in the granules was detected. High proportion of Chloroflexi filaments were detected by FISH in the sludge. Changes in the microbial population caused by the low pH probably destabilize the reactor performance. The presence of filamentous granules in the sludge and its further growing could be encouraged by the pH drop and the low specific organic load applied to the reactor. The low specific organic load was a consequence of the high VSS content in the UASB reactor, due to the lack of purges. The length of the filaments attached to the granules grew throughout time. In order to eliminate the sludge with poor settlement properties a recycle was applied to the reactor. As a consequence, low amount of granular sludge stayed in the reactor. At the end, COD concentration in the influent reached higher values than in normal operation; at the same time a complete sludge wash out occurred. On the other hand, using the same sludge (after the recycle implementation) in a bench scale reactor the good properties of the sludge were completely recovered.  相似文献   

4.
An Imhoff tank was reconstructed into a 250 m3 UASB reactor in order to treat a malting plant wastewater. The UASB was inoculated with sludge from an anaerobic lagoon used for slaughterhouse wastewater treatment. After two months of operation the reactor achieved full load with an HRT of 17 h, a COD removal higher than 80% and a biogas production of 300 m3/day (77% average methane content), with an organic loading rate of 3.6 kgCOD/m3.d (0.24 kgCOD/kgVSS.d). A yield coefficient of 0.09 gVSS/gCODrem was found from a mass balance. The fat present in the inoculated sludge (48 mg/gSSV) did not affect the start up performance. Sludge from the inoculum with high content of fat (270 mg/gSSV), was separated by flotation in the first week of operation. The COD removal efficiency was scarcely influenced by the reactor operation temperature (17-25 degrees C).  相似文献   

5.
An upflow anaerobic sludge bed (UASB)-submerged aerated biofilter (SAB) system that treats effluents from a jeans factory was evaluated. The 210-day operational period was divided into three phases (PI, PII and PIII), each with a different hydraulic retention time (HRT in h) and organic loading rate (OLR in kg COD/m3.d). In PI, the best performance was achieved using the UASB (HRT 24, OLR 1.3) with COD and color removal efficiencies of 59 and 64%, respectively; the corresponding values were 77 and 86% for the final effluent. In PII, the efficiencies were 50 and 55% using the UASB (HRT 16, OLR 1.2), respectively, and 69 and 81% for the final system effluent, respectively. In PIII, the UASB (HRT 12 and ORL 3.2) showed the poorest performance; the efficiencies decreased to 48 and 50%, respectively. The same phenomenon occurred in the system with corresponding efficiencies decreasing to 69 and 61%. Throughout the experiment, the system removal efficiencies were between 57 and 88% for nitrogen and between 14 and 63% for sulfate. The final effluent showed relatively non-toxicity or moderate toxicity using Daphnia magna as an indicator. Therefore, the overall results showed that the use of a sequential anaerobic-aerobic system is promising for treatment of textile industrial wastewater.  相似文献   

6.
林可霉素高浓度有机废水处理技术   总被引:1,自引:0,他引:1  
王冰 《水资源保护》2008,24(4):53-57
采用厌氧颗粒和好氧活性污泥分别对内循环厌氧反应器(IC)和间歇式活性污泥法(SBR)进行污泥接种培养,研究水解酸化-IC-SBR工艺在林可霉素生产废水处理方面的运行效果。结果表明:在进水COD的质量浓度为6 000~9 000 mg/L,IC和SBR反应器中有机负荷分别为0.82 kg/(kg.d)和0.26 kg/(kg.d)左右的情况下,IC和SBR反应器分别运行60 d和7 d,COD平均去除率分别达到91%和61%,出水COD的质量浓度在300 mg/L以下,达到GB 8978—1996《污水综合排放标准》二级标准。  相似文献   

7.
A 2.0 L volume of EGSB reactor was operated at 20 degrees C for more than 500 days with 0.3-0.4 g COD/L of sucrose base wastewater to investigate the influence of effluent-recirculation on the process performance. At the start up period, the reactor was operated in EGSB mode with 5 m/h upflow velocity by continuous effluent recirculation. The COD loading was set to 7.2-9.6 kg COD/m(3) day with HRT of 1 hour. However, in this mode, EGSB reactor exhibited insufficient COD removal efficiency, i.e., 50-60%. Therefore, UASB mode (without recirculation, 0.7 m/h upflow velocity) was used for 30 minutes in every 40 minutes cycle to increase the COD concentration in the sludge bed. As a result, an excellent process performance was shown. The COD removal efficiency increased from 65% to 91% and the reactor could maintain a good physical property of retained sludge (sludge concentration: 33.4 g VSS/L and SVI: 25 mL/g VSS). Furthermore, retained sludge possessed sufficient level of methanogenic activity at 20 degrees C.  相似文献   

8.
Wine production is seasonal, and thus the wastewater flow and its chemical oxygen demand (COD) concentrations greatly vary during the vintage and non-vintage periods, as well as being dependant on the winemaking technologies used, e.g. red, white or special wines production. Due to this seasonal high variability in terms of organic matter load, the use of membrane biological reactors (MBR) could be suitable for the treatment of such wastewaters. MBR offers several benefits, such as rapid start up, good effluent quality, low footprint area, absence of voluminous secondary settler and its operation is not affected by the settling properties of the sludge. A pilot scale hollow fibre MBR system of 220 L was fed by adequately diluting white wine with tap water, simulating wastewaters generated in wineries. The COD in the influent ranged between 1,000 and 4,000 mg/L. In less than 10 days after the start up, the system showed a good COD removal efficiency. The COD elimination percentage was always higher than 97% regardless of the organic loading rate (OLR) applied (0.5-2.2 kg COD/m3 d), with COD concentrations in the effluent ranging between 20 and 100 mg/L. Although the biomass concentration in the reactor increased from 0.5 to 8.6 g VSS/L, the suspended solids concentration in the effluent was negligible. Apparent biomass yield was estimated in 0.14 g VSS/g COD.  相似文献   

9.
A promising system consisting of Up-flow Anaerobic Sludge Blanket (UASB) and Down-Flow Hanging Sponge (DHS) system was investigated for removal of COD, BOD(5) fractions, ammonia and faecal coliform from domestic wastewater. The combined system was operated at different HRTs of 16, 11 and 8 h. The results indicate that increasing the total HRT from 8 to 16 h significantly (p < 0.05) improves the COD(total) and BOD(5 total) removal mainly as a result of a higher removal of COD(soluble), BOD(soluble), COD(particulate) and BOD(particulate). The main part of coarse suspended solids was removed in the UASB reactor (76.4+/-18%) and the remaining portion was adsorbed and/or enmeshed and degraded in the biomass of the DHS system. The combined system achieved a substantial reduction of total suspended solids (TSS) resulting in an average overall percentage removal of 94+/-6% (HRT = 16 h) and 89.5+/-7.8% (HRT = 8 h). Faecal coliform reduction was significantly improved when increasing the total HRT from 8 to 16 h. Residual counts of faecal coliform were 3.1 x 10(3)/100 ml at a total HRT of 16 h, and 2.8 x 10(4)/100 ml at total HRT of 8 h, corresponding to overall removal efficiency of 99.97+/-0.03 and 99.6+/-0.3% respectively. Despite the increase of ammonia concentration as a result of protein hydrolysis in the UASB reactor, a substantial removal of ammonia was achieved in the DHS system. The results obtained show that decreasing the OLR imposed to DHS system from 2.6 to 1.6 kg COD/m(3).d significantly (p < 0.05) improves the removal efficiency of ammonia by a value of 29%. However, the removal efficiency of ammonia is not further increased when decreasing the OLR from 1.6 to 1.3 kg COD/m(3).d. The discharged sludge from UASB + DHS system exerts a good settling property and partially stabilized.DHS profile results have shown that the major part of COD, BOD(5), and TSS was removed in the upper part of the system, consequently, the nitrification process was occurring in the lower part of the DHS system.  相似文献   

10.
The performance of an upflow anaerobic sludge blanket (UASB) reactor and a hybrid UASB-filter reactor was investigated and compared for the treatment of domestic wastewater at different operational temperatures (28, 20, 14 and 10 degrees C) and loading rates. For each temperature studied a constant CODt removal was observed as long as the upflow velocity was lower than 0.35 m/h. At these upflow velocities similar removals were observed for both reactor types at 28 and 20 degrees C, 82 and 72% respectively. However, at 14 and 10 degrees C the UASB reactor showed a better COD removal (70% and 48%, respectively) than the hybrid reactor (60% and 38%). COD removal resulted from biological degradation and solids accumulation in the reactors. At 28 degrees C, a constant 200 g sludge mass was observed in both reactors and COD removal was attributed to biological degradation only. At lower temperatures, solids accumulation was observed in addition to biological degradation with an increase in reactor sludge as the temperature decreased. The decrease in biological degradation at lower temperatures was offset by solids accumulation and explains the similar overall COD removal efficiency observed at 28 degrees C, 20 degrees C and 14 degrees C. The decrease in temperature was also followed by an increase in the effluent TSS concentration in both reactors. At 14 and 10 degrees C a lower effluent TSS concentration and better performance was observed in the UASB reactor.  相似文献   

11.
In 2001 the first green biorefinery started operation in Switzerland with a design load of 5,000 tons dm of grass per year and a combined output of fibres (0.4 tons per ton input), protein (160 t/t) and bioenergy (500 kWh/t). Bioenergy was produced in a 570 m3 UASB reactor which has been monitored intensively during its first year of operation. Anaerobic treatment of liquid residues with > 80% degradation of organics was shown up to high f/m ratios and loading rates of 12 -15 kg COD/m3 d and specific biogas production of 0.5-0.65 Nm3 of gas per kg of COD added. A mass flow analysis of solids and pellets leads to the conclusion, that due to a low sludge bed volume of only 16% of the reactor combined with a low actual organic loading of 1.5 kg COD/m3 d there was a restricted adsorption and a low degradation of substrate solids.  相似文献   

12.
高浓度啤酒废水在厌氧消化过程中容易酸化,抑制甲烷转化。为提高UASB反应器的稳定性和处理效果,本研究通过序批式试验的方法,以模拟啤酒废水为底物,考察了两种不同粒径的活性炭对加速UASB污泥颗粒化进程和提高甲烷产率的影响。试验运行95 d,进水有机负荷从2.9 kg/(m3·d)增加到12.0 kg/(m3·d),监测反应器内产气量、出水VFA、出水TOC及污泥特性等参数的变化趋势。结果表明:投加活性炭能有效缩短厌氧污泥颗粒化的时间,增强产甲烷菌活性,大幅提升甲烷产量,出水TOC和VFA都维持在较低水平;并且较小粒径的粉末活性炭对UASB反应器的促进作用优于较大粒径的颗粒活性炭,能有效促进底物向甲烷气体转化。  相似文献   

13.
Upflow anaerobic sludge blanket (UASB) methane fermentation treatment of cow manure that was subjected to screw pressing, thermal treatment and subsequent solid-liquid separation was studied. Conducting batch scale tests at temperatures between 140 and 180 degrees C, the optimal temperature for sludge settling and the color suppression was found to be between 160-170 degrees C. UASB treatment was carried out with a supernatant obtained from the thermal treatment at the optimal conditions (170 degrees C for 30 minutes) and polymer-dosed solid-liquid separation. In the UASB treatment with a COD(Cr) loading of 11.7 kg/m3/d and water temperature of 32.2 degrees C, the COD(Cr) level dropped from 16,360 mg/L in raw water to 3,940 mg/L in treated water (COD(Cr), removal rate of 75.9%), and the methane production rate per COD(Cr) was 0.187 Nm3/kg. Using wastewater thermal-treated at the optimal conditions, also a methane fermentation treatment with a continuously stirred tank reactor (CSTR) was conducted (COD(Cr) in raw water: 38,000 mg/L, hydraulic retention time (HRT): 20 days, 35 degrees C). At the COD(Cr) loading of 1.9 kg/m3/d, the methane production rate per COD(Cr), was 0.153 Nm3/kg. This result shows that UASB treatment using thermal pre-treatment provides a COD(Cr), loading of four times or more and a methane production rate of 1.3 times higher than the CSTR treatment.  相似文献   

14.
对上流式厌氧反应器(UASB)和折流式厌氧反应器(ABR)处理难降解印染废水进行中试研究。结果表明:在厌氧反应器最佳水力停留时间为24 h条件下,UASB和ABR稳定运行2个多月,在进水COD质量浓度波动较大的情况下(ρmax=1 020.0 mg/L,ρmin=593.6 mg/L,ρ均=755.4 mg/L),UASB和ABR出水平均COD质量浓度分别为409.3 mg/L和420.9 mg/L,平均去除率分别为45.5%和43.9%。两种厌氧反应器对色度去除效果较佳,进水平均色度342倍,出水平均色度分别78倍和80倍,平均去除率分别为77.2%和76.6%。印染废水B/C由0.29分别提高到0.46和0.43,废水可生化性明显改善,UASB较ABR效果好。  相似文献   

15.
The anaerobic treatability of purified terephthalic acid (PTA) wastewater in a novel, rapid mass-transfer fluidized bed reactor using brick particles as porous carrier materials was investigated. The reactor operation was stable after a short 34 day start-up period, with chemical oxygen demand (COD) removal efficiency between 65 and 75%, terephthalate (TA) removal efficiency between 60% and 70%, and system organic loading rate (OLR) increasing from 7.37 to 18.52 kg COD/m(3) d. The results demonstrate that the reactor is very efficient, and requires a low hydraulic retention time (HRT) of 8 h to remove both TA and COD from the high-concentration PTA wastewater. The system also has high resistance capacity to varied OLR.  相似文献   

16.
The use of a new three stages MBR process with a first methanogenic UASB stage, a second stage with aerobic biofilm growing on small carrier elements maintained in suspension and third stage with membrane filtration module is presented. The objective of the first methanogenic chamber is to diminish COD of the raw wastewater, producing a biogas rich in methane, and decrease the sludge production. In the second stage, the remaining soluble biodegradable COD is oxidized by heterotrophs. In the third stage, the membrane modules could be operated at higher fluxes than those reported for AnMBR systems, and similar to those obtained in aerobic MBRs. In this sense, the concept of these three stages MBR is to join the advantages of the methanogenic and aerobic membrane bioreactor processes, by reducing energy requirements for aeration, producing biogas with high methane percentage and a permeate with very low COD content. A synthetic wastewater was fed to the three stages MBR. COD in the influent was between 200 and 1,200 mg/L, ammonium ranged from 10 to 35 mg/L and phosphorous concentration was 8 mg/L. OLR in-between 1 and 3 kg COD/(m3 d) and a HRT of 13-21 h were applied. Temperature was between 17.5 and 23.2 degrees C. During the whole operating period the COD removal efficiencies were in the range of 90 and 96% of which in between 40 and 80% was removed in the first methanogenic chamber. Biogas production with methane content between 75 and 80% was observed. With regard to membrane operation, average permeabilities around 150 L/(m2 h bar) were achieved, operating with fluxes of 11-15 L/(m2 h).  相似文献   

17.
Aerobic granular sludge grown in a sequential batch reactor was proposed as an alternative to anaerobic processes for organic matter and nitrogen removal from swine slurry. Aerobic granulation was achieved with this wastewater after few days from start-up. On day 140 of operation, the granular properties were: 5 mm of average diameter, SVI of 32 mL (g VSS)(-1) and density around 55 g VSS (L(granule))(-1). Organic matter removal efficiencies up to 87% and nitrogen removal efficiencies up to 70% were achieved during the treatment of organic and nitrogen loading rates (OLR and NLR) of 4.4 kg COD m(-3) d(-1) and of 0.83 kg N m(-3) d(-1), respectively. However, nitrogen removal processes were negatively affected when applied OLR was 7.0 kg COD m(-3) d(-1) and NLR was 1.26 kg N m(-3) d(-1). The operational cycle of the reactor was modified by reducing the volumetric exchange ratio from 50 to 6% in order to be able to treat the raw slurry without dilution.  相似文献   

18.
In this investigation, the robustness and stability of UASB reactors was evaluated on the basis of four indicators: (i) COD removal efficiency; (ii) effluent variability; (iii) pH stability; and (iv) recovery time. The experiments were carried out using six pilot-scale UASB reactors fed with domestic sewage and operated under different operational conditions. After establishment of a "steady-state", organic and hydraulic shock loads (six times the loading rate during six hours) were imposed. The results show that the UASB reactors are robust systems with regards to COD removal efficiency and pH stability when exposed to shock loads. However, this reactor cannot attenuate the imposed fluctuation in the influent COD. A secondary treatment unit is needed to retain the expelled sludge occurring as a result of a hydraulic shock load, or prior to the shock, a sufficient amount of sludge needs to be discharged from the reactor.  相似文献   

19.
One of the major challenges of anaerobic technology is its applicability for low strength wastewaters, such as sewage. The lab-scale design and performance of a novel Gradual Concentric Chambers (GCC) reactor treating low (165+/-24 mg COD/L) and medium strength (550 mg COD/L) domestic wastewaters were studied. Experimental data were collected to evaluate the influence of chemical oxygen demand (COD) concentrations in the influent and the hydraulic retention time (HRT) on the performance of the GCC reactor. Two reactors (R1 and R2), integrating anaerobic and aerobic processes, were studied at ambient (26 degrees C) and mesophilic (35 degrees C) temperature, respectively. The highest COD removal efficiency (94%) was obtained when treating medium strength wastewater at an organic loading rate (OLR) of 1.9 g COD/L.d (HRT = 4 h). The COD levels in the final effluent were around 36 mg/L. For the low strength domestic wastewater, a highest removal efficiency of 85% was observed, producing a final effluent with 22 mg COD/L. Changes in the nutrient concentration levels were followed for both reactors.  相似文献   

20.
The present study aimed mainly for the development of a wastewater treatment system incorporating enhanced primary treatment, anaerobic digestion of coagulated organics, biofilm aerobic process for the removal of soluble organics and disinfection of treated water. An attempt was also made to study the reuse potential of treated water for irrigation and use of digested sludge as soil conditioner by growing marigold plants. Ferric chloride dose of 30 mg/l was found to be the optimum dose for enhanced primary treatment with removals of COD and BOD to the extent of 60% and 77%, respectively. Efficient anaerobic digestion of ferric coagulated sludge was performed at 7 days hydraulic retention time (HRT). Upflow aerobic fixed film reactor (UAFFR) was very efficient in removals of COD/BOD in the organic loading rate (OLR) range of 0.25 to 3 kg COD/m(3)/day with COD and BOD removals in the range 65-90 and 82-96, respectively. Photo-oxidation followed by disinfection saved 50% of chlorine dose required for disinfection of treated effluent and treated water was found to be suitable for irrigation. The result also indicated that anaerobically digested sludge may be an excellent soil conditioner. From the results of this study, it is possible to conclude that the developed wastewater treatment system is an attractive ecologically sustainable alternative for sewage treatment from institutional/industrial/residential campuses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号