首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After an increase in capital investment in UK sewers to reduce hydraulic capacity problems, the proportion of sewer flooding incidents now linked to blockages has increased. It is clear that if sewer operators are to continue to reduce flooding incidents, then better blockage management is now required. Sewer blockage formation is poorly understood; blockages are intermittent and occur in a number of circumstances. This paper reports on the development of low-cost acoustic instrumentation that can identify the location of a pipe blockage and then estimate the local head loss as a result of the presence of a blockage. A set of experiments were carried out in two full-scale laboratory pipes. The pipes' condition was altered by inserting blockages of different sizes. Acoustic data were recorded and presented in terms of the acoustic energy reflected from the partially blocked pipe. The results of this study show that the total reflected acoustic energy correlates with the measured head loss. A new empirical relation between the reflected acoustic energy and head loss due to a blockage is derived. This knowledge can then be used to estimate the reduction in flow capacity resulting from a blockage based on a single remote measurement.  相似文献   

2.
In line with contemporary trends and seeking to develop new methods and technologies, a new, original technology was explored and designed based on a non-conventional process of electrical pulse discharge in a water chamber, referred to as 'Pulse Electrohydrodynamic Technology' (PELHYDT). The application of the PELHYDT in sewer blockage removal is presented in this paper. Existing machinery can remove two blockages of gully pot connections per hour. Three blockages of pipe conduits are generally removed during an 8-h working day. Applying PELHYDT technology, which allows for high rates of removal of mechanical obstructions, it is possible to achieve operating fluid pressures in the order of 10(3)-10(4) bars, a velocity of 100 m/s, a deformation acceleration of the model material structure of 10(6)-10(7) m/s2, and high-frequency hydraulic shock waves with a frequency of 10(3)-10(4) Hz. The applicability of this efficient technology in sewer blockage removal was proven under laboratory conditions at operating fluid pressures from 50 to 160 bars, which are standard for sewer maintenance. Water velocities generally achieved in sewers using existing flushing technologies range between 1 and 3 m/s and usually do not exceed 9 m/s. PELHYDT creates waves whose velocity is at least 100 m/s, and is therefore about ten times more efficient than existing technologies. PELHYDT generates an electrohydrodynamic wave very quickly, virtually in the form of an explosion. It was proven under laboratory conditions that the application of this technology for blockage removal in practice will not result in any sewer damage.  相似文献   

3.
Maintaining public sewer systems is one of sewer operators’ key responsibilities. Thus, information regarding the condition of the sewer system based on regular inspections is crucial in order to ensure operability and identify areas in need of rehabilitation. Condition assessments are usually carried out either directly by operational staff or indirectly, by means of CCTV inspection. However, alternative inspection methods are also available, including a manhole-zoom camera. Within the framework of the ongoing INNOKANIS project of the University of Natural Resources and Life Sciences, Vienna four different manhole-zoom camera models have been tested to date. One aspect of this testing focused on structural and operational condition assessments in sewer systems. Based on these results, the manhole-zoom camera can provide a simple, quick and cost-effective operational overview in terms of the need for rehabilitation, cleaning or further inspection. Despite certain limitations that have to be considered when using this inspection device, it represents an effective tool for optimising operations of the sewer system.  相似文献   

4.
This paper reports on the development of a low-cost, rapidly deployable sensor for surveying live sewers for blockages and structural failures. The anticipated cost is an order of magnitude lower than current techniques. The technology is based on acoustic normal model decomposition, The instrument emits short coded acoustic signals which are reflected from any sewer wall defect. The acoustic signals can be short Gaussian pulses or longer sinusoidal sweeps and pseudo-random noise. The processing algorithms used on the reflected signal can predict the extent and geometry of the pipe deformation, and the locations and approximate size of common blockages. The effect of the water level on the frequency of the fundamental mode has also been investigated. It is shown that the technique can be adapted to work reliably in relatively large 600 mm diameter sewer pipes.  相似文献   

5.
Blockages in piping systems are formed from potentially complex combinations of bio-film build up, corrosion by-products, and sediment deposition. Transient-based methods seek to detect blockages by analyzing the evolution of small amplitude pressure waves. In theory, such methods can be efficient, nearly non-intrusive and economical but, thus far, studies have only considered symmetrical blockages, uniform in both the radial and longitudinal directions. Laboratory experiments are described here that involve pipe blockages with various levels of irregularity and severity; the way the transient response is affected by a non-uniform blockage is investigated. The differences between uniform and non-uniform blockages are quantified in terms of the rate that wave envelopes attenuate and the degree that phases are shifted. Two different methods for modeling these impacts are compared, namely through an increase in pipe roughness and through a wave scattering model. Wave scattering is shown to play a dominant role in explaining both wave envelope attenuation and phase shift. The accuracy of existing transient-based methods of blockage detection in the frequency domain is also examined, and is found that the predictions of rough blockage locations and sizes by current method are in good agreement with data, with relatively larger discrepancies for rough blockage lengths.  相似文献   

6.
The major steps of sewerage rehabilitation include inspection of sewerage, assessment of structural conditions, computation of structural condition grades, and determination of rehabilitation methods and materials. Conventionally, sewerage rehabilitation planning relies on experts with professional background that is tedious and time-consuming. This paper proposes an automation model of planning optimal sewerage rehabilitation strategies for the sewer system by integrating image process, clustering technology, optimization, and visualization display. Firstly, image processing techniques, such as wavelet transformation and co-occurrence features extraction, were employed to extract various characteristics of structural failures from CCTV inspection images. Secondly, a classification neural network was established to automatically interpret the structural conditions by comparing the extracted features with the typical failures in a databank. Then, to achieve optimal rehabilitation efficiency, a genetic algorithm was used to determine appropriate rehabilitation methods and substitution materials for the pipe sections with a risk of mal-function and even collapse. Finally, the result from the automation model can be visualized in a geographic information system in which essential information of the sewer system and sewerage rehabilitation plans are graphically displayed. For demonstration, the automation model of optimal sewerage rehabilitation planning was applied to a sewer system in east Taichung, Chinese Taiwan.  相似文献   

7.
In this study, three asset management strategies were compared with respect to their efficiency to reduce flood risk. Data from call centres at two municipalities were used to quantify urban flood risks associated with three causes of urban flooding: gully pot blockage, sewer pipe blockage and sewer overloading. The efficiency of three flood reduction strategies was assessed based on their effect on the causes contributing to flood risk. The sensitivity of the results to uncertainty in the data source, citizens' calls, was analysed through incorporation of uncertainty ranges taken from customer complaint literature. Based on the available data it could be shown that increasing gully pot blockage is the most efficient action to reduce flood risk, given data uncertainty. If differences between cause incidences are large, as in the presented case study, call data are sufficient to decide how flood risk can be most efficiently reduced. According to the results of this analysis, enlargement of sewer pipes is not an efficient strategy to reduce flood risk, because flood risk associated with sewer overloading is small compared to other failure mechanisms.  相似文献   

8.
The objective of the present study is the estimation of the potential benefits of sewer pipe rehabilitation for the performance of the drainage system and the wastewater treatment plant (WWTP) as well as for the receiving water quality. The relation of sewer system status and the infiltration rate is assessed based on statistical analysis of 470 km of CCTV (Closed Circuit Television) inspected sewers of the city of Dresden. The potential reduction of infiltration rates and the consequent performance improvements of the urban wastewater system are simulated as a function of rehabilitation activities in the network. The integrated model is applied to an artificial system with input from a real sewer network. In this paper, the general design of the integrated model and its data requirements are presented. For an exemplary study, the consequences of the simulations are discussed with respect to the prioritisation of rehabilitation activities in the network.  相似文献   

9.
Prolonged drought which has occurred everywhere around the world has caused water shortages, leading many countries to consider more sustainable practices, which are called source management practices (SMPs) to ensure water availability for the future. SMPs include the practices of water use reduction, potable water substitution and wastewater volume reduction such as water demand management, rainwater harvesting, greywater recycling and sewer mining. Besides the well known advantages from SMPs, they also contribute to the alteration of wastewater characteristics which finally affect the process in downstream infrastructure such as sewerage networks. Several studies have shown that the implementation of SMPs decreases the wastewater flow, whilst increasing its strength. High-strength wastewater can cause sewer problems such as sewer blockage, odour and corrosion. Yet, not all SMPs and their impact on existing sewer networks have been investigated. Therefore, this study reviews some examples of four common SMPs, the wastewater characteristics and the physical and biochemical transformation processes in sewers and the problems that might caused by them, and finally the potential impacts of those SMPs on wastewater characteristics and sewer networks are discussed. This paper provides sewer system managers with an overview of potential impacts on the sewer network due to the implementation of some SMPs. Potential research opportunities for the impact of SMPs on existing sewers are also identified.  相似文献   

10.
简要介绍了440t锅炉系统及对流过热器结构,对对流过热器管失效管样进行了测量分析,认为引起对流过热器管爆漏的主要原因是停炉启动后管内被带入大量氧化皮及以前检修过程中遗留的金属物在管内形成堵塞,从而发生短期过热爆管,最后提出了具体的预防爆管的建议。  相似文献   

11.
Sewer and wastewater systems suffer from insufficient capacity, construction flaws and pipe deterioration. Consequences are structural failures, local floods, surface erosion and pollution of receiving waters bodies. European cities spend in the order of five billion Euro per year for wastewater network rehabilitation. This amount is estimated to increase due to network ageing. The project CARE-S (Computer Aided RE-habilitation of Sewer Networks) deals with sewer and storm water networks. The final project goal is to develop integrated software, which provides the most cost-efficient system of maintenance, repair and rehabilitation of sewer networks. Decisions on investments in rehabilitation often have to be made with uncertain information about the structural condition and the hydraulic performance of a sewer system. Because of this, decision-making involves considerable risks. This paper presents the results of research focused on the study of hydraulic effects caused by failures due to temporal decline of sewer systems. Hydraulic simulations are usually carried out by running commercial models that apply, as input, default values of parameters that strongly influence results. Using CCTV inspections information as dataset to catalogue principal types of failures affecting pipes, a 3D model was used to evaluate their hydraulic consequences. The translation of failures effects in parameters values producing the same hydraulic conditions caused by failures was carried out through the comparison of laboratory experiences and 3D simulations results. Those parameters could be the input of 1D commercial models instead of the default values commonly inserted.  相似文献   

12.
In a world with an increasing urban population, analysing the construction impacts of sanitation infrastructures through Life Cycle Assessment (LCA) is necessary for defining the best environmental management strategies. In this study, the environmental impacts of one linear meter of sewer constructive solution were analysed for different pipe materials and diameters used in Southern Europe; a unit of different sewer appurtenances (pump, manhole and inspection chamber) was also considered. The impacts of the pipe materials were compared considering different lifespan periods and high-density polyethylene (HDPE) turned out to be the worst option, being polyvinyl chloride (PVC) and concrete the most favourable ones. Few data are available on the material and energy flows in the installation stage; therefore, a comparative analysis of trenches with sand and concrete bedding was conducted. The results show that the installation stage represents up to 80 % of the total life-cycle impact of the constructive solutions. Concrete pipes with half-concrete/half-sand bedding are the best option and produce 20–30 % of the impact of HDPE pipes with concrete bedding. Hence, designers should focus not only on the pipe but also on the trench model. A methodology was presented to enable the impact aggregation of the different sewer elements, and Betanzos (Spain) was selected to conduct a pilot study in small cities. In the future, studies will need to incorporate the use and maintenance stage, as it is not standard and varies according to the physical features of the cities. Finally, this study provides basic concepts for developing eco-efficiency indicators.  相似文献   

13.
The main objective of sewer rehabilitation is to improve its function while eliminating inflow/infiltration (I/I). If we can identify the amount of I/I for an individual pipe, it is possible to find the distribution of the total I/I over the entire sewer system. With this information we identify which sub-area is more critical than others. However, in real, the amount of I/I for an individual pipe is almost impossible to be obtained due to the limitation of cost and time. For this reason, we suggested the rehabilitation weighting model (RWM) to determine it objectively or systematically. Based on the determined amount of I/I for an individual pipe, we also suggested the rehabilitation priority model (RPM), which is equipped with genetic algorithm, to determine the optimal rehabilitation priority (ORP) for sub-areas in term of minimizing the amount of I/I occurring while the rehabilitation process is performed. The benefit obtained by implementing the ORP for rehabilitation of sub-areas is estimated by the only waste water treatment cost (WWTC) of I/I which occurs during the sewer rehabilitation period. A decision making support system which is consisted of the RWM and the RPM was applied to an urban drainage area. The results of the ORP were compared with those of a numerical weighting method (NWM) and the worst order which are other methods to determine the rehabilitation order of sub-areas in field. The ORP reduced the WWTC by 22% compared to the NWM and by 40% compared to the worst order.  相似文献   

14.
随着土石坝服役时间延长,其下伏涵管病害尤其是渗漏现象亟需快速精准的安全诊断。提出了一种可用于土石坝涵管病害诊断的多视角视觉图像拼接方法,通过Closed Circuit Television(CCTV)管道机器人采集土石坝涵管全景视觉图像,结合多视几何三维重建技术构建涵管三维点云,再利用三维曲面估计技术判断出模型曲面,并对图像进行展平拼接,实现了土石坝涵管图像的渗漏与裂缝缺陷数字化自动识别和准确定位,为病害处治提供了参考依据。以湖南省某中型水库导流涵管为例,采用CCTV管道机器人采集涵管图像,通过多视角视觉图像拼接方法,获取了涵管全景数字展开图,与现场实地检查情况一致。该方法具有检测灵活、快速精准以及成本低廉等优点,在土石坝涵管病害检测领域具有广泛的应用前景。  相似文献   

15.
The design of urban stormwater systems and sanitary sewer systems consists of solving two problems: generating a layout of the system and the pipe design which includes the crown elevations, slopes and commercial pipe sizes. A heuristic model for determining the optimal (minimum cost) layout and pipe design of a storm sewer network is presented. The hierarchical procedure combines a sewer layout model formulated as a mixed-integer nonlinear programming (MINLP) problem which is solved using the General Algebraic Modeling System (GAMS) and a simulated annealing optimization procedure for the pipe design of a generated layout was developed in Excel. The GAMS and simulated annealing models are interfaced through linkage of Excel and GAMS. The pipe design model is based upon the simulated annealing method to optimize the crown elevations and diameter of pipe segments in a storm sewer network using layouts generated using GAMS. A sample scenario demonstrates that using these methods may allow for significant costs saving while simultaneously reducing the time typically required to design and compare multiple storm sewer networks.  相似文献   

16.
The acoustic attenuation, relative sound pressure levels and the equivalent Nikuradse wall roughness under variable flow conditions in a 600 mm concrete sewer pipe are experimentally investigated. The values of the acoustic attenuation are obtained in the case of airborne sound propagation in the dry pipe. A range of values of the equivalent wall roughness is artificially generated by deploying a periodical array of engineering bricks. A novel method of rapid evaluation of the acoustic attenuation is proposed. The method relies upon sound reflections from the adjacent manholes. The results demonstrate that the acoustic attenuation depends strongly on the value of the equivalent wall roughness. This work can pave the way to the efficient methodology for the in-situ, physical evaluation of the equivalent hydraulic roughness of new and existing sewer networks.  相似文献   

17.
Biological treatments of odorous compounds, as compared to chemical or physical technologies, are in general ecologically and environmentally favourable. However, there are some inefficiencies relative to the media used in biofiltration processes, such as the need for an adequate residence time; the limited lifetime, and pore blockage of media, which at present render the technology economically non-viable. The aim of the study is to develop novel active media to be used in performance-enhanced biofiltration processes, by achieving an optimum balance and combination of the media adsorption capacity with the biodegradation of H2S through the bacteria immobilised on the media. An enrichment culture was obtained from activated sludges in order to metabolise thiosulphate. Batch-wise experiments were conducted to optimise the bacteria immobilisation on activated carbon, so as to develop a novel "biocarbon". Biofilm was mostly developed through culturing the bacteria with the presence of carbons in mineral media. SEM and BET tests of the carbon along with the culturing process were used to identify, respectively, the biofilm development and biocarbon porosity. Breakthrough tests evaluated the biocarbon performance with varying gas resistance time, inlet H2S concentration, and type of support materials. Fundamental issues were discussed, including type of support material, mode of bacteria immobilisation, pore blockages, and biodegradation kinetics, etc. This batch-wise study provides a basis for our future research on optimisation of the biofiltration process using a bio-trickling reactor.  相似文献   

18.
This paper assesses the influence of (differential) settlement on sewer system functioning. Based on historical data of the vertical position of sewer invert levels, tilt measurements and in-sewer inspection videos, settlement and settlement related influences are analyzed for a case study area in Amsterdam. The average settlement rate of this system was 4 mm/year. Given this settlement rate, it is shown that settlement significantly influences sewer system functioning within the lifetime of a sewer (system).  相似文献   

19.

Optimization models are developed for simultaneously determining the pipe layout and the pipe design for storm sewer systems. The pipe design process includes computation of commercial diameters, slopes, and crown elevations for the storm sewer pipes. The optimization models aim to minimize the total costs of the layout and the pipe design for most of system elements. The optimization models are formulated as a 0–1 Integer Nonlinear Programming problem and solved using the General Algebraic Modeling System without the use of heuristic models which were characteristic of all previous models for the simultaneous determine of the pipe layout and pipe design of sewer networks. The models are based upon two different optimization approaches: (1) considers one or more commercial diameters of pipe connecting two manholes and (2) considers only one commercial diameter in a pipe connecting two manholes. The commercial diameters, pipe slopes, crown elevations, and total costs of the storm sewer system were compared for the two approaches using an example that illustrates the savings in cost by allowing multiple pipe sizes. The two new optimization modeling approaches developed herein can simultaneously determine the minimum cost pipe design (commercial diameters, slopes, and crown elevations) and pipe layout of storm sewer systems and satisfy all design constraints.

  相似文献   

20.
TEMPEST is a new interactive simulation program for the estimation of the wastewater temperature in sewers. Intuitive graphical user interfaces assist the user in managing data, performing calculations and plotting results. The program calculates the dynamics and longitudinal spatial profiles of the wastewater temperature in sewer lines. Interactions between wastewater, sewer air and surrounding soil are modeled in TEMPEST by mass balance equations, rate expressions found in the literature and a new empirical model of the airflow in the sewer. TEMPEST was developed as a tool which can be applied in practice, i.e., it requires as few input data as possible. These data include the upstream wastewater discharge and temperature, geometric and hydraulic parameters of the sewer, material properties of the sewer pipe and surrounding soil, ambient conditions, and estimates of the capacity of openings for air exchange between sewer and environment. Based on a case study it is shown how TEMPEST can be applied to estimate the decrease of the downstream wastewater temperature caused by heat recovery from the sewer. Because the efficiency of nitrification strongly depends on the wastewater temperature, this application is of practical relevance for situations in which the sewer ends at a nitrifying wastewater treatment plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号