首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silicon carbide (SiC) films deposited by chemical vapor deposition were exposed to hydrogen chloride and hydrogen gaseous mixture (5% HCl and 95% H2) at 1200°C with a total pressure of 101 kPa in order to investigate their durability against the corrosive gas. Corrosion resistance against the HCl and H2 gaseous mixture was related to the micro-structure and preferred orientation of the SiC films, which depend on the deposition conditions. The stratified structure with a small crystallite had higher corrosion resistance than the faceted columnar structure, and (111) oriented films had higher resistance than (220) oriented films.  相似文献   

2.
主要以SiC多孔陶瓷材料为例,综述了多孔陶瓷的4种常用制备方法,即添加造孔剂法,发泡法,有机泡沫浸渍法和溶胶-凝胶法的工艺特点和制品特性,并且列举了制备SiC多孔陶瓷材料的6种特殊方法,包括含硅树脂热解法、固相反应烧结法、气相反应渗入法、流延成型法、固态烧结法和浸渍热解法。文中还给出了多孔陶瓷的性能与表征,介绍了SiC多孔陶瓷材料在过滤材料、催化剂载体、热工材料、吸声材料和复合材料骨架材料方面应用情况,为SiC多孔陶瓷材料的研究和应用开发提供指导意义。  相似文献   

3.
Thermal Shock Behavior of Porous Silicon Carbide Ceramics   总被引:1,自引:0,他引:1  
Using the water-quenching technique, the thermal shock behavior of porous silicon carbide (SiC) ceramics was evaluated as a function of quenching temperature, quenching cycles, and specimen thickness. It is shown that the residual strength of the quenched specimens decreases gradually with increases in the quenching temperature and specimen thickness. Moreover, it was found that the fracture strength of the quenched specimens was not affected by the increase of quenching cycles. This suggests a potential advantage of porous SiC ceramics for cyclic thermal-shock applications.  相似文献   

4.
Burner Rig Hot Corrosion of Silicon Carbide and Silicon Nitride   总被引:1,自引:0,他引:1  
A number of commercially available SiC and Si3N4 materials were exposed to 1000°C for 40 h in a high-velocity, pressurized burner rig as a simulation of an aircraft turbine environment. Na impurities (2 ppm) added to the burner flame resulted in molten Na2SO4 deposition, attack of the SiC and Si3N4, and formation of substantial Na2O. x (SiO2) corrosion product. Room-temperature strength of the materials decreased as a result of the formation of corrosion pits in SiC and grain-boundary dissolution and pitting in Si3N4.  相似文献   

5.
Crystalline silicon carbide (SiC) fiber was produced by a new, simple procedure. Activated carbon fiber (ACF) was reacted with gaseous silicon monoxide and was converted to SiC fiber at elevated temperature and reduced pressure. The reaction was completed at temperatures as low as 1473 K. The reacted fiber consisted of submicrometer particles which were not observed in the original ACF. The SiC crystal size in the reacted fiber was approximately 30 nm. The microstructure of the fiber became dense after it was heat-treated in air at 1573 K or in nitrogen gas at 1873 K.  相似文献   

6.
多孔碳化硅的制备与应用研究进展   总被引:1,自引:0,他引:1  
刘水刚  高伟 《陶瓷》2004,(2):13-17
碳化硅陶瓷材料由于具有耐磨、耐腐蚀、高温强度高、高热导、宽禁带等优良特性,被广泛应用于航空航天、石油化工、机械电子等领域。同时,碳化硅如果能攻克其低比表面的缺陷,还将是一种催化剂载体的理想候选材料,可应用于一些高温、强腐蚀等苛刻的条件中。而目前国内在这方面的研究尚未见公开的报道。笔者将对近年来高比表面碳化硅材料的研究工作进行小结,阐述其制备原理、方法及应用。同时介绍了本研究小组下一步的研究方向。  相似文献   

7.
利用表面活性剂发泡,结合淀粉固结成型工艺,Al2O3-Y2O3为助烧剂的条件下,低温烧结制备了SiC多孔陶瓷,并对其气孔率、气孔形貌、强度等性能进行了研究。实验发现,制得的多孔材料中含有大、中、微三种大小的气孔;浆料的固相含量是影响材料密度和强度的主要因素,当固相含量为60%.72%时多孔陶瓷的相对密度为17%-36%,抗压强度为5—19MPa。  相似文献   

8.
The effects of exposures to high-temperature gaseous atmospheres on the strength of Nicalon SiC fibers were investigated. The exposure conditions were as follows: (1) H2 with various P H2O for 10 h at 1000° and 1200°C, and (2) air for 2 to 100 h at 800° to 1400°C. Individual fibers were tested in tension following each exposure. The strengths of the fibers were strongly influenced by the exposure atmosphere and temperature, but less affected by time at temperature. When exposed in air, a SiO2 layer was formed on the surface, minimizing the degradation of strength. However, this beneficial effect was negated under conditions in which the SiO2 layer became too thick. The most severe degradation resulted from exposure to a reducing atmosphere, presumably due to the reduction of SiO2 inherent in the fibers.  相似文献   

9.
Porous silicon carbide (SiC) ceramics were fabricated by an oxidation-bonding process in which the powder compacts are heated in air so that SiC particles are bonded to each other by oxidation-derived SiO2 glass. Because of the crystallization of amorphous SiO2 glass into cristobalite during sintering, the fracture strength of oxidation-bonded SiC ceramics can be retained to a relatively high level at elevated temperatures. It has been shown that the mechanical strength is strongly affected by particle size. When 0.6 μm SiC powders were used, a high strength of 185 MPa was achieved at a porosity of ∼31%. Moreover, oxidation-bonded SiC ceramics were observed to exhibit an excellent oxidation resistance.  相似文献   

10.
Corrosion of Silicon Carbide in Gases and Alkaline Melts   总被引:1,自引:0,他引:1  
The corrosion behavior of sintered SiC in gaseous environments and alkaline melts was investigated at 900°C. In oxidizing atmospheres such as normally exist in a gas turbine, SiC forms a dense coherent surface film of SiO2 which is not corroded by thin layers of condensed sodium sulfate. However, under some conditions, especially when very low oxygen pressures are maintained at the SiC surface or when basic salt melts or slags containing carbonaceous material are present, rapid corrosion of the ceramic can occur. On the other hand, SiC is inert in pure N2, H2, or H2-H2S mixtures at 900°C. These different modes of behavior are discussed in the context of possible high- temperature applications of SiC ceramics.  相似文献   

11.
高比表面积碳化硅的制备及表征   总被引:1,自引:0,他引:1  
王冬华 《广州化工》2011,39(4):51-54
以糠醇为碳源,正硅酸乙酯为硅源,硝酸钴为催化剂,含氢硅油为结构助剂制备碳化硅前驱体,通过溶胶-凝胶和碳热还原的方法制备出高比表面积碳化硅。采用XRD、FTIR、SEM、HRTEM及BET对所制备的样品进行表征。结果表明,所得碳化硅具有高的比表面积127 m2/g;含氢硅油的特殊结构有利于形成多孔碳化硅;所得碳化硅具有特殊的光致发光性能。  相似文献   

12.
多孔碳化硅陶瓷由于具有优良的高温强度、耐磨性、耐腐蚀性以及抗热震性而得到越来越广泛的关注.随着科技的发展,其已在环境保护、过滤分离、尾气吸收、吸声降噪、生物医学、航空航天和能源化工等方面发挥着重要的作用.本文着重分析了多孔碳化硅陶瓷的传统制备工艺与先进制备工艺的优缺点,并对其未来的制备工艺作出展望.  相似文献   

13.
采用浸渍提拉的方法将聚乙烯醇、硅溶胶、海藻酸钙等涂敷于多孔碳化硅板上对其进行改性,并通过SEM观察改性后多孔碳化硅的生物相容性,并对其处理COD的能力进行测定。实验表明:聚乙烯醇和硅溶胶可以对多孔碳化硅进行改性,改性后多孔碳化硅板的生物相容性提高,微生物负载量增大,处理COD的能力明显提高。反应5d后,PVA改性的多孔碳化硅板COD去除率由改性前的15%提高到80%;硅溶胶改性的多孔碳化硅板COD去除率由改性前的15%提高到78%。  相似文献   

14.
采用浸渍提拉的方法将聚乙烯醇、硅溶胶、海藻酸钙等涂敷于多孔碳化硅板上对其进行改性,并通过SEM观察改性后多孔碳化硅的生物相容性,并对其处理COD的能力进行测定。实验表明:聚乙烯醇和硅溶胶可以对多孔碳化硅进行改性,改性后多孔碳化硅板的生物相容性提高,微生物负载量增大,处理COD的能力明显提高。反应5d后,PVA改性的多孔碳化硅板COD去除率由改性前的15%提高到80%;硅溶胶改性的多孔碳化硅板COD去除率由改性前的15%提高到78%。  相似文献   

15.
α-silicon carbide platelet/β-silicon carbide composites have been produced in which the individual platelets were coated with an aluminum oxide layer. Hot-pressed composites showed a fracture toughness as high as 7.2 MPa·m1/2. The experiments indicated that the significant increase in fracture toughness is mainly the result of crack deflection and accompanying platelet pullout. The coating on the platelets also served to prevent the platelets from acting as nucleation sites for the α- to β-phase transformation, so that the advantageous microstructure remains preserved during high-temperature processing.  相似文献   

16.
Composites of SiC/Si and SiC/SiC were prepared from single yarns of SiC. The use of carbon coatings on SiC yarn prevented the degradation normally observed when chemically vapor deposited Si is applied to SiC yarn. The strength, however, was not retained when the composite was heated at elevated temperatures in air. In contrast, the strength of a SiC/C/SiC composite was not reduced after this composite was heated at elevated temperatures, even when the fiber ends were exposed.  相似文献   

17.
SiC-monofilament-reinforced SiC or Si3N4 matrix composites were fabricated by hot-pressing, and their mechanical properties and effects of filaments and filament coating layers were studied. Relationships between frictional stress of filament/matrix interface and fracture toughness of SiC monofilament/Si3N4 matrix composites were also investigated. As a result, it was confirmed experimentally that in the case of composites fractured with filament pullout, the fracture toughness increased as the frictional stress increased. On the other hand, when frictional stress was too large (>about 80 MPa) for the filament to be pulled out, fracture toughnesses of the composites were almost the same and not so much improved over that of Si3N4 monolithic ceramics. The filament coating layers were found to have a significant effect on the frictional stress of the SiC monofilament/Si3N4 matrix interface and consequently the fracture toughness of the composites. Also the crack propagation behavior in the SiC monofilament/Si3N4 matrix composites was observed during flexural loading and cyclic loading tests by an in situ observation apparatus consisting of an SEM and a bending machine. The filament effect which obstructed crack propagation was clearly observed. Fatigue crack growth was not detected after 300 cyclic load applications.  相似文献   

18.
The fundamental corrosion behavior of silicon carbide (SiC) ceramics was investigated after immersion in 290°C water solutions with different pH and dissolved-oxygen concentrations. The weight loss in the oxygenated solution was more than that in the deoxygenated solution and was accelerated by increasing pH. Preferential attack could be found at grain boundaries and around pores on the sample surface immersed in the oxygenated alkaline solution. The weight change, dW, followed the general rate law, (dW)m= kt. The exponent, m, was 1.11 in the alkaline solution and 0.45 in the acidic solution. Based on the above results, the SiC was considered to be directly hydrolyzed to a silica sol, with its dissolution kinetics dependent on the sol stability. This corrosion behavior is quite different from those in high-temperature or vapor-phase hydrothermal oxidation, where the oxidation rate is controlled by oxidant diffusion through the protective silica surface layer.  相似文献   

19.
Microporous two-phase AlN–SiC composites were prepared using Al4C3 and either Si (N2 atmosphere) or Si3N4 (Ar atmosphere) as precursors. The reaction mechanisms of the two synthesis routes and the effect of processing conditions on reaction rate and the material microstructures were demonstrated. The exothermic reaction between Si and Al4C3 under N2 atmosphere was shown to be a simple processing route for the preparation of porous two-phase AlN–SiC materials. The homogeneous two-phase AlN–SiC composites had a grain size in the range of 1–5 μm, and the porosity varied in the range of 36%–45%. The bending strength was 50–60 MPa, in accordance with the high porosity.  相似文献   

20.
Silicon - The ability of carbon- and silicon-based nanotubes, including pure carbon, silicon carbide, and Ge-doped silicon carbide nanotubes (CNT, SiCNT, SiCGeNT, respectively), for sensing highly...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号